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                 A Parallel Algorithm for Contact in a Finite Element Code

ABSTRACT
A parallel algorithm is developed for contact/impact of multiple three dimensional bodies 

undergoing large deformation. As time progresses the relative positions of contact 

between the multiple bodies changes as collision and sliding occurs. The parallel algo-

rithm is capable of tracking these changes and enforcing an impenetrability constraint and 

momentum transfer across the surfaces in contact.

Portions of the various surfaces of the bodies are assigned to the processors of a distrib-

uted-memory parallel machine in an arbitrary fashion, known as the primary decomposi-

tion. A secondary, dynamic decomposition is utilized to bring opposing sections of the 

contacting surfaces together on the same processors, so that opposing forces may be bal-

anced and the resultant deformation of the bodies calculated. The secondary decomposi-

tion is accomplished and updated using only local communication with a limited subset of 

neighbor processors.

Each processor represents both a domain of the primary decomposition and a domain of 

the secondary, or contact, decomposition. Thus each processor has four sets of neighbor 

processors: a) those processors which represent regions adjacent to it in the primary 

decomposition, b) those processors which represent regions adjacent to it in the contact 

decomposition, c) those processors which send it the data from which it constructs its con-

tact domain, and d) those processors to which it sends its primary domain data, from 

which they construct their contact domains. The latter three of these neighbor sets change 

dynamically as the simulation progresses.

By constraining all communication to these sets of neighbors, all global communication, 

with its attendant nonscalable performance, is avoided. A set of tests are provided to mea-

sure the degree of scalability achieved by this algorithm on up to 1024 processors. Issues 
ii



related to the operating system of the test platform which lead to some degradation of the 

results are analyzed.

This algorithm has been implemented as the contact capability of the ALE3D multiphys-

ics code, and is currently in production use.
iii
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1    INTRODUCTION

Hydrocodes may be loosely defined as computer programs used to model large deforma-

tion transient problems that occur on a short time scale [1]. Historically there are two main 

classes of  hydrocodes. Lagrangian codes use meshes that move with the material, while 

Eulerian codes have fixed meshes through which the material moves. ALE (Arbitrary 

Lagrangian Eulerian) methodology is a technique that attempts to incorporate the 

strengths of both approaches, while avoiding the weaknesses of each. In practice, ALE 

hydrocodes are essentially Lagrangian codes, with an added capability to adjust the mesh 

between Lagrange steps, either for increased resolution in certain regions or to avoid mesh 

tangling.

The notion of sliding interfaces, also called slidelines, slide surfaces, and contact surfaces, 

is native to the Lagrangian approach. If two or more separately-meshed bodies (or fluid 

media) are in contact, the region of contact between the two bodies is referred to as a slid-

ing interface. The term "sliding interface" emphasizes the surfaces in persistent contact, 

forming a contact discontinuity. Contact discontinuities are material interfaces across 

which the component of material velocity orthogonal to the interface is continuous, 
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though densities and tangential material velocities may be discontinuous (i.e. the sides  

may slide across each other).  

A related concept is that of contact-impact, where two bodies not in initial contact later 

come into contact, transferring momentum at the moment of impact. An example would 

be a projectile striking a target. After impact, the bodies may remain in persistent contact, 

as described above, or may separate.

FIGURE 1-1 

In Figure 1-1 (a) persistent contact between two surfaces is depicted, while in Figure 1-1 

(b) the upper body travelling at velocity V is about to impact the lower body. Problems of 

both types may be studied with hydrocodes.

Though the above discussion assumed two or more bodies, a single deformable body may 

also undergo contact with itself, as in  automobile crash simulations or column buckling. 

For simplicity, two bodies will continue to be discussed, with the understanding that they 

may be different regions of the same body.

The most fundamental requirement of a slide interface is that the nodes on the surface of 

one body not penetrate the boundary faces of another body (or itself). This is known as the 

impenetrability constraint. If a surface node is already in persistent contact with the sur-

V

(a)                                                                   (b)
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face of another body, then the impenetrability constraint constrains motion to be along the 

surface, i.e. along some particular face of the surface, unless a tensile force develops 

which pulls the two surfaces apart. On the other hand, if the node is not currently in con-

tact, then its motion must be checked to see if it penetrates any surface faces of the other 

body during the current timestep. If so, its free motion is allowed for the portion of the 

timestep before the penetration. For the remainder of the timestep the impenetrability con-

straint is enforced.

In either case, sliding contact or impact, of all the faces on the other surface, the one where 

contact occurs (if contact does occur) must be determined. This has been referred to as the 

contact detection problem. Contact detection is potentially an O(N2) problem, if for each 

node of one surface the potential intersection with each face on another surface must be 

considered. For a parallel implementation this also creates the problem of massive global 

communication as the positions and velocities of all faces are sent to all processors each 

cycle.

Several solutions have been offered to reduce the order of the contact detection, with vary-

ing degrees of success. These will be summarized in Section 2.4. This thesis will describe 

a particular approach to the parallel contact detection problem, and its implementation in a 

modern multi-physics hydrocode (ALE3D). The approach has some restrictions, described 

in Section 2.4.4. Fortunately these limitations are irrelevant to the class of problems typi-

cally addressed by ALE3D.

Once contact has been detected, i.e. nodes on one surface are paired with faces on the 

other surface, contact enforcement can be performed. Several viable approaches to contact 
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enforcement are described in Section 1.3. The particular method used by ALE3D is 

described in much greater detail in Section A.11.

1.1 Overview

The first chapter of this thesis provides some general background for the setting in which 

the work was done. Specifically it surveys the development over the years of a class of 

software programs called hydrocodes, discussing variants that have evolved. It then takes 

a look at the general problem of contact, from a computational perspective.

In the second chapter the issues involved with parallelism are brought up, and several 

modern approaches to parallel contact are discussed.

The third chapter presents the method which is the primary original contribution of this 

work. It discusses the problem of evolving a communication pattern scalably, and presents 

a solution that involves three different communication topologies, each of them local and 

scalable it itself.

Chapter 4 presents a number of example applications, together with their performance on 

a large parallel machine. These applications are typical of the kind of problems to which 

the parent code, ALE3D, is applied.

Chapter 5 provides a brief summary and discussion of futute directions.

The first appendix provides a mass of hard-core detail in the implementation of the basic 

contact algorithm in ALE3D, and should primarily be of use to someone tasked with 

working on ALE3D itself, or a similar code.



      5
The second appendix  surveys extensions to the design of chapters 3 and and appendix A 

made to the ALE3D implementation to accommodate complex real-life applications. 

These are described at a higher level than the discussion of the appendix A.

1.2 Hydrocodes

1.2.1 Etymology of the Term "Hydrocode"

The term "hydrocode" came into being in the 1950s at the national defense laboratories to 

describe a type of software program based on fundamental conservation laws, which could 

be used to study the shock dynamics of materials under extreme pressure: i.e. explosions 

and hypervelocity impact. The term "hydrodynamics" is synonymous with "fluid dynam-

ics", and refers to the branch of physics that studies the forces on and motion of fluids. 

Hydrodynamics is itself a branch of continuum mechanics. The original expression 

"hydrodynamics simulation code" was shortened to "hydrocode" [2], where "code" is syn-

onymous with "software program".

It was never intended that hydrocodes be used to study only what are commonly thought 

of as fluids. Rather, in extreme pressure regimes the forces of compression and expansion 

are so much greater than the resistance of the material to shear stresses that shear stresses 

were ignored as a simplification, even for materials such as metals with significant 

"strength", or resistance to shear, in more typical regimes. This simplification leads 

directly to the hydrodynamic equations of motion, where pressure replaces the more gen-

eral stress tensor.
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Hydrocode technology soon evolved beyond this simplification with codes such as 

TENSOR [3] and HEMP [4], as designers began to explore later stages of energetic 

events, at which time strength of materials did become significant. Thus the hydrody-

namic assumption was replaced by more realistic material models. However, the name 

stuck, and is still in common use today, confusing newcomers to the field.

Perhaps a more appropriate name, but one that is much less often seen is the term "wave 

code", emphasizing the central role in this technology of the accurate modelling of shock 

waves.

1.2.2 A Brief Survey of Hydrocode Evolution

The governing equations for hydrocodes are hyperbolic and nonlinear in nature. This 

implies that solutions can include discontinuities along "characteristics", or wave fronts. 

One approach to handling these discontinuities is to track them directly, via the Method of 

Characteristics [5]. This method works well for simple situations, but as shocks multiply 

and interact, becomes intractable. von Neumann and Richtmyer [6] developed a method of 

introducing an artificial "viscosity" into the equations which spread the shock front out 

over several grid zones, removed unphysical oscillations at the shock front, and still main-

tained good accuracy for the entire solution. Shocks of any complexity can thus be han-

dled automatically without any explicit tracking. This method of artificial viscosity, with 

suitable refinements for higher dimensions, has become a standard approach in hydro-

codes.

In the late 1950’s one dimensional codes (in spherical and cylindrical geometry) were 

developed at the national laboratories to study weapons and weapon effects. In one dimen-
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sion the Lagrangian approach (Section 1.2.6) was clearly the method of choice. The pri-

mary difficulty with the Lagrangian approach, mesh tangling, only appears for two or 

higher dimensions. The KO code [4] was typical of this class of 1D Lagrangian codes. 

As machine capacity grew, 2D codes (which better represented the underlying problems) 

became more feasible. In 1964 Wilkins [4] published a description of the model for a 2D 

(with axial symmetry) Finite Difference Lagrangian code, HEMP, which included an elas-

tic-plastic strength model and slide interfaces. Another influential code of the same era 

with similar capacities was TENSOR [3].

By this time the problem of mesh distortion in the Lagrangian approach had become pain-

fully familiar to researchers. One way to get around these problems, at least for a while, is 

to rearrange the mesh either by hand or with semi-automatic tools, during the course of a 

run, in order to allow the run to proceed further. This is known as a remap. The remap has 

two phases. In the relaxation phase the positions of the internal nodes and corresponding 

zones are moved to provide for a more regular zoning. In the advection phase the exten-

sive physical quantities such as mass, momentum and energy are reapportioned to the new 

zones in such a way that the overall quantity is strictly conserved. Little, however, could 

be done for material boundaries that themselves became severely distorted, as in turbulent 

flow or projectile impact.

To overcome this problem Eulerian, or fixed grid, hydrocodes were developed. The early 

Eulerian hydrocodes such as OIL [7] were an outgrowth of a technology called Particle-

In-Cell, or PIC. The PIC method used a fixed mesh through which discrete particles 

moved. The particles were assigned mass, and density was simply the sum of mass of the 
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particles in a cell, divided by cell volume. In the PIC approach the momentum and energy 

equations (eq. 1-2., eq. 1-3) were solved for each cell ignoring the transport term 

  (where  is the transported energy or component of momentum) 

(Section 1.2.3). Then the particles were moved (advected) based on the computed veloci-

ties from the first step. Finally the momentum and energy carried by the particles was used 

to update cell velocity and internal energy [8]. From this basis the first continuous Eule-

rian codes were built by replacing the discrete particles with a continuous density within 

the cells.

The 1970’s saw the advent of widespread usage of the Finite Element method (FEM). As 

originally formulated, FEM when applied to dynamic problems led to a semi-discretized 

set of differential equations that were coupled in two ways: via the "mass matrix" and the 

"stiffness" matrix. Because of this coupling, advancement of the solution each cycle 

required the solution of a large system of equations.  For the small timesteps required by 

hydrocodes to capture detailed shock behavior, this was prohibitive. However, Belytschko  

[9], [10] showed that above approach could be replaced by a lumped mass matrix and 

explicit time integration, and still produce accurate results for shock physics. This opened 

the door for the use of the Finite Element method for hydrocodes. Early efforts in this 

direction were HONDO [11], DYNA [12], and EPIC [13]. The latter two have spawned 

families of codes which are still widely used today.

Over the ensuing years the various classes and families of hydrocodes have undergone a 

number of evolutionary improvements and extensions, stimulated largely by the needs of 

the user base of the given code. For instance, structural elements (e.g. beams and shells) 

vi xi∂
∂ Φ[ ] Φ



      9
were added to support structural analysis, 3D versions of the more successful codes were 

developed, sophisticated interface trackers written to shore up a weakness in that area of 

Eulerian codes, and various mergers of technologies such as Coupled Eulerian Lagrangian 

(Section 1.2.8) and Arbitrary Lagrangian Eulerian (Section 1.2.9) were developed. Mean-

while the implementations were constantly evolving to take advantage of emerging hard-

ware technology, such as vector machines and shared and distributed memory parallel 

machines.

1.2.3 Governing Equations

The fundamental equations governing dynamic behavior of continuous media are derived 

from conservation laws; specifically, the conservation of mass, momentum, and energy. 

Expressed in differential form, these equation may be written as:

1-1

1-2

1-3

In these equations,  is the density as a function of position (i.e. mass/volume),  is 

material velocity,  is the body force per unit mass,  is the stress tensor, and  is the 

specific energy.

These equations may be derived by considering an infinitesimal control volume, and 

applying the principle that the change of a quantity (e.g. mass) within the control volume 

t∂
∂ρ

xi∂
∂ ρvi( )+ 0                           Conservation of Mass=

t∂
∂vi vj xj∂

∂vi+ fi
1
ρ
---

xj∂
∂σij                  Conservation of Momentum+=

t∂
∂e vi xi∂

∂e+ fivi
1
ρ--- xj∂

∂ σijvi( )      Conservation of Energy         +=

ρ vi

fi σij e
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is dictated by the amount of the quantity swept into and out of the control volume by the 

movement of the material, plus any source or sink of the quantity within  the control vol-

ume. Many standard texts contain a derivation of the conservation equations. For instance, 

see Panton [14].

Equations 1-1 to 1-3 are known as the Eulerian formulation of the conservation equations. 

If a special type of derivative:

1-4

is defined (usually called the material derivative, substantial derivative, or total derivative) 

then the equations can be written in the slightly simpler form:

1-5

1-6

1-7

Equations 1-5 to 1-7 are known as the Lagrangian formulation of the conservation equa-

tions.

Mathematically there is no difference between the two forms: it is just a matter of defini-

tion. However, conceptually and computationally the distinction is a springboard for two 

fundamentally different approaches. In the Eulerian approach attention is focused on a 

fixed control volume. Flux into and out of the control volume is represented by the "trans-

D
Dt------ t∂

∂≡ vi xi∂
∂+

Dρ
Dt------- ρ xi∂

∂vi+ 0                     Conservation of Mass=

Dvi
Dt
--------- fi

1
ρ
---

xj∂
∂σij                  Conservation of Momentum+=

De
Dt------- fivi

1
ρ--- xj∂

∂ σijvi( )      Conservation of Energy         +=
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port term"  . In the Lagrangian approach the conceptual focus is on a control volume 

that moves with the flow. In this frame of reference the convective part of the derivative 

disappears, and we are left with just the total time derivative  (see eq. 1-4).

A helpful analogy is that of a boat on a river. The boat is the control volume. The Eulerian 

boat is anchored, and the river flows around it with some velocity, whereas the Lagrangian 

boat is adrift and moves at the speed of the surrounding river.

The conservation equations, in either form, do not constitute a complete set of solvable 

equations. For one thing a problem domain must be specified together with boundary con-

ditions and initial conditions. But also, not enough is said about the stress tensor . In 

order to produce a complete set of equations, the stress must be re-expressed in more fun-

damental unknowns related to displacements. Typically this is done through constitutive 

relations and equations of state.

A constitutive law ties the stress for a specific material to the strain, or relative displace-

ment of nearby points, strain rates, and various "history variables" of the material such as 

damage and work-hardening. A simple example of a constitutive relation is Hooke’s Law 

for elastic materials:

1-8

where the strain tensor  is defined as:

vi xi∂
∂

D
Dt
------

σij

σij Cijklεkl=

εkl
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1-9

and  is a displacement of a material point from its equilibrium position. Thus, in this 

case, stress can be replaced by an expression in terms of displacement:

1-10

The equation of state expresses the relation between thermodynamic quantities. Typically 

it is used to model the relationship between the energy e, the pressure P, and the density . 

The pressure P is a constituent of the stress tensor ( ), and so the 

equation of state helps eliminate stress from the unknowns in constructing a complete set 

of equations.

1.2.4 Time Integration

The conservation equations can be written in the general form

1-11

where G may involve spatial, but not time derivatives of the scalar or vector function f. 

Consider the time interval from ti to ti+1. The value of G will in general vary over this time 

interval. The "best guess" of its mean value is some combination of its value at the two 

endpoints: i.e.

1-12
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where Gi is G(f, ...) calculated at time ti, Gi+1 is G(f, ...) calculated at time ti+1, and 

.

Assuming that the calculation has proceeded to time ti, then Gi can be explicitly calcu-

lated; its functional argument values are known. However, if , then evaluation of 

Gi+1 requires values of the argument that are not yet known. This results in a system of 

equations (when all grid points are taken into account) that must be solved simultaneously. 

This is known as implicit time integration.

Implicit time integration (usually) has the virtue of unconditional stability. That is, no mat-

ter how large the time step, the solution will not be swamped by exponentially growing 

error terms. Of course, for a large timestep the results may be totally inaccurate, but that is 

a separate issue. For the same timestep as an explicit integration, the implicit integration 

will in fact be more accurate. However, the cost of an implicit scheme with its requirement 

for the solution of a system of equations, quite possibly iteratively for nonlinear problems, 

is far more expensive than the simpler explicit time advancement.

This cost may be acceptable when large enough timesteps can be taken. However, for the 

phenomena typically studied with hydrocodes, a separate consideration drives the choice 

of timestep. Since a primary goal is to accurately model shock waves traversing the mate-

rial, the timestep must be short enough that the wave will not go further than the smallest 

dimension of the smallest zone in a single cycle, or it will be invisible to the code. Typi-

cally this results in timesteps on the order of microseconds. This restriction is essentially 

the same as the Courant stability restriction, so that nothing is  lost by ensuring that the 

0 ε 1≤ ≤

ε 1<
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timestep obey the Courant condition. Thus there is no good reason not to use explicit time 

integration, and that is what virtually all hydrocodes do.

That said, it is true that several of the most popular hydrocodes either have an implicit 

integration mode, or are part of a family of codes that also supports implicit time integera-

tion. This is indicative of the widening applicability of hydrocodes as time has gone on, 

making them competitive in fields such as Structural Dynamics. For instance, DYNA3D 

has a sister implicit code NIKE3D, while ALE3D can be operated in "implicit hydro" 

mode. This feature can, for instance, be used in modelling phenomena that change slowly 

over a long time, followed by sudden explosive action, such as an explosive in a fire that 

slowly heats it to a detonation point. Implicit time integration coupled with long timesteps 

would be used over the long incubation period, then switched to explicit time integration 

and short (microsecond order) timesteps to model the actual explosion.

1.2.5 Finite Difference vs Finite Elements

The finite difference approach to discretizing the conservation laws starts directly with the 

strong form (Eq 1-1 to 1-3) of the conservation equations. These essentially describe local 

behavior: i.e. relationships between dependent variables and their derivatives at any given 

point X and time t. In the finite difference discretization, these local relationships are 

reduced from a continuum to a discrete set of grid points, and the dependent variables are 

tracked only at these points. Derivatives are replaced with finite differences based  on val-

ues in the local neighborhood of the grid points.

A wide variety of finite difference formulas may be applied. For a fixed rectangular grid a 

simple forward, backward or central difference can replace first order derivatives, etc. 
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However, for more complicated grids such as a moving Lagrangian grid, a better approach 

is to use an approximation of the derivative based on a line integral about the surrounding 

cells [15].

It should be noted that, in discretizing nonlinear conservation equations, care must be 

taken that the approximation itself is still conservative. When the conservation equations 

are formulated, an essential idea is that the time rate of change of a quantity in an infinites-

imal volume is the result of the flux of that quantity into the volume, plus source or sink 

terms internal to the volume. This balance must be maintained in the discretization, by 

evaluating the finite differences in such a way that the flux passing out of any cell is bal-

anced by the same quantity passing into the adjacent cells. See for instance Hirsch [16].

The Finite Element Method (FEM) is conceptually a more global approach. The solution 

(for example, displacement from initial position as a function of time) is approximated by 

a continuous, piecewise smooth function, where each smooth patch is defined over a sin-

gle cell, and the patches are "sewn" together continuously, but not necessarily smoothly, at 

the cell boundaries. Each patch is typically represented by a low-order polynomial func-

tion, such as a bilinear or trilinear surface. The continuous solution is dictated by the val-

ues of the solution at the nodes of the cell. Another way of saying this is that the nodal 

values are the "degrees of freedom" in the space of possible solutions constructed in this 

way.  

The weak form of the governing equation is then used to find an optimal approximation of 

the above type to the "true" solution. For example the momentum equation, in its weak 

form, may be written as:
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1-13

where the equality must hold for all Ti in the space of permissible functions (i.e. functions 

that satisfy certain boundary conditions, as well as conditions on differentiability). 

Clearly if the displacement solution satisfies the strong form of the momentum equation it 

will also satisfy the weak form, since the term of the integrand in parentheses will be iden-

tically zero. But the value of the weak form lies in the possibility that useful solutions may 

be found that do not strictly satisfy the strong form, due to non-existence of derivatives at 

certain points, such as at patch boundaries in the solutions proposed above.

The weak form proves to be a useful starting point for finding a globally optimal approxi-

mate solution. The proposed, patched-together displacement field, with coefficients corre-

sponding to the nodal displacements still unknown, is "plugged into" the integrand term 

. In order to do this,  must be expressed in terms of the displacement, 

via the constitutive stress-strain relation. Vi is itself a time derivative of displacement. 

Then this expression is multiplied independently by each of a set of functions Ti. In the 

popular Galerkin procedure [17], the trial functions are just the basis functions from which 

the approximate surface was patched together. Then the product is integrated numerically 

over the domain . This leads to a set of equations that still contains time derivatives of 

the unknowns (called a semi-discretization). The set may then be integrated either explic-

itly or implicitly in time to approximate the dynamic behavior of the system.

Ti
Dvi
Dt--------- fi– 1
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1.2.6  Lagrangian Hydrocodes

In a Lagrangian hydrocode the mesh is fixed to the material and moves with it. Mesh 

nodes may be considered as representative material points within and on the surface of the 

material. The zones in the mesh move and distort, yet always contain the same material. 

Thus the mass in a Lagrangian zone is constant, though the volume may vary.

Figure 1-2 shows a metal bar before and after collision with a fixed wall. Each zone 

changes shape and potentially volume, but contains the same material at both times.

FIGURE 1-2

The mechanics of the Lagrangian formulation are analogous to Newtonian particle 

mechanics. The force at the mesh nodes is a resultant of the stress field in the neighbor-

hood of the node (i.e. in adjacent zones). The mass of the body is treated as though it were 

concentrated at the nodes. Together the mass of, and force on, a node result in an accelera-

tion of the node which, integrated over the time step, produces an incremental displace-

ment. The new displacements of the nodes are then fed back into the material model to 

produce the updated stress field in the material, and the next step begins.

The Lagrangian approach provides several benefits. It is simple in that material never 

leaves or enters mesh cells. For the same reason it provides an excellent representation of 

material interfaces and boundaries. There is no need for "mixed cells", i.e. cells containing 

t = 0                                                 t = tn



      18
multiple materials, with all the concomitant complexity of implementation. It also pro-

vides a natural way to track material history, such as damage or work hardening, which are 

properties of specific regions of the material, and may be recorded as zonal data. Such 

"history variables" are essential to realistic material modelling for many materials.

The chief drawback of the Lagrangian method is its tendency to produce mesh distortion, 

or "tangling". For instance, consider again Figure 1-2. At the later time, some of the cells 

have become compressed in one direction while expanding in another. For codes with 

explicit time integration (see Section 1.2.4), the time step is limited to the time it takes a 

signal (such as a wave) to cross the smallest cell of the problem. This is the well-known 

Courant (or CFL) Condition  [41]. If it is violated the solution becomes unstable. As the 

cells become compressed the timestep must be reduced to satisfy the Courant condition. It 

is not unusual for the type of problem addressed by hydrocodes to produce so much com-

pression that the time effectively stops advancing before the time of interest is reached.

Another typical case with still greater distortion occurs when a cell becomes inverted:

FIGURE 1-3

This will typically result in the calculation of a negative volume for the cell, followed 

shortly by a program "crash".

t = 0                                                  t = tn
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   d                        c                               c                        d
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1.2.7 Eulerian Hydrocodes

The most obvious characteristic of an Eulerian hydrocode is that the mesh defining the 

problem does not move from one timestep to the next. A mesh is initially overlaid on the 

entire region over which the material will move during the course of the simulation.

FIGURE 1-4

As time proceeds the body moves and potentially deforms through the mesh, leaving some 

zones and entering others.

One difficulty encountered with this approach is the tracking of boundaries and material 

interfaces. In Figure 1-4 a clear border is drawn between a body and its surroundings, but 

this gives an incorrect impression. Since Eulerian codes track material movement across 

zone boundaries, it is really only known that the material fills some zones, is absent from 

others, and is partially present in other mixed zones. The volume fraction of the material 

in mixed zones can be tracked, but is in a sense "constant" throughout the zone, so that the 

border of the material object is only known to the resolution of a zone. Figure 1-5 gives a 

more accurate picture of the actual simulation. The zones marked with "+" are pure zones 

t = 0                                                         t = tn
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filled with the object material. The zones marked "o" are mixed: part object and part 

"void" material. The unmarked zones are again pure zones, filled with void material.

FIGURE 1-5

The use of mixed zones allows another problem to appear. As soon as material enters a 

zone in any fraction, it is present everywhere in the zone, so that the next cycle it may be 

convected to yet another zone. This rate of convection is non-physical, and causes the 

body to be smeared out over the whole problem space. To combat this problem Eulerian 

hydrocodes use a preferential advection scheme for mixed cells. If a "downwind" cell is 

pure (i.e. single material) and its upwind cell is mixed, then the material the mixed cell 

shares with the pure cell is advected preferentially out of the mixed cell, till it is used up.

A main strength of the Eulerian fixed grid approach is seen in high velocity impact simu-

lations. At the meeting between two materials extreme deformation may occur. As dis-

cussed in the previous section, if the mesh is tied to the material it can become badly 

distorted, leading to extremely small timesteps or even a program "crash". Eulerian hydro-

codes do not exhibit this drawback, since cell geometry is fixed

The term Eulerian hydrocode is a bit misleading. In the general field of Computational 

Fluid Dynamics, the Eulerian approach, which is nearly universal, is taken to include the 

t = 0                                                         t = tn
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idea that the velocity field of the fluid is the fundamental unknown. Individual "particles", 

as tracked in the Lagrangian approach, are not present in the formulation. Only instanta-

neous velocities at various fixed points are relevant. However, the technology of the Eule-

rian hydrocodes is much closer to the Lagrangian method. Each cycle the material is 

advanced based on the stress in the local environment. The mesh temporarily moves with 

the material, creating a new mesh slightly offset from the old mesh. The quantities on the 

new mesh are then mapped back into the old mesh in such a way that mass, momentum 

and energy over the entire system is conserved.

1.2.8 Coupled Eulerian Lagrangian Hydrocodes

In some applications, especially those involving fluid-solid interactions, it is clearly 

advantageous to model parts of the problem with a fixed Eulerian grid, and other parts 

with a moving Lagrangian grid. As a simple example, consider an inflating balloon. It 

makes sense to model the expanding, possibly turbulent gas inside the balloon with an 

Eulerian grid, while modelling the skin of the balloon with a Lagrangian grid, possibly 

using shell structural elements. In this problem, the Eulerian grid covers all space that the 

balloon will eventually expand into, but the active part of the grid is delimited by the edge 

of the Lagrangian grid, which forms irregular zones along the edge of the Eulerian grid.

 Coupled Eulerian Lagrangian (CEL) hydrocodes support this capability. The first CEL 

code [15] was written in the early 1960s, and was used to model 2D blast simulations. 

Some more recent examples of CEL codes are MSC/DYTRAN [18], MSC/PISCES [19], 

HULL [20], and the coupling of CTH with EPIC through ZAPOTEC [21].
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Generally a CEL hydrocode has three modules: Lagrangian, Eulerian, and Coupling. At a 

given timestep ti, the known state of the material, including the pressure of the Eulerian 

region acting on the Lagrange regions, is used to update the position of the Lagrange 

meshes to the next timestep ti+1. The Coupling module then determines the new active 

area of the Eulerian mesh. Given the domain of the active Eulerian mesh at ti+1,the equa-

tions of motion are used to advance the state of the material in the active mesh from ti to 

ti+1. Finally a second phase of coupling determines the new pressures at ti+1 acting on the 

Lagrange meshes, and the next timestep may begin.  

1.2.9 Arbitrary Lagrangian Eulerian Hydrocodes

Arbitrary Lagrangian-Eulerian (ALE) hydrocodes are an extension of the Eulerian hydro-

code approach to non-fixed meshes. As discussed in Section 1.2.7, the Eulerian hydrocode 

first takes a Lagrange step, then remaps the mesh back to its original (Eulerian) position. 

An ALE code does the same, but has greater flexibility in deciding what mesh to map back 

to. It may do no remap at all, in which case it behaves like a Lagrangian code. It may map 

back into the Eulerian mesh. Or it may choose yet a different mesh, in the interest of main-

taining zone regularity internal to the body, while preserving the boundaries as computed.

The simplest version of ALE, called "simple" ALE or SALE, restricts ALE mesh move-

ment to within single materials [22]. The material boundaries are still treated in a strictly 

Lagrangian manner. The advantage of this is that it avoids the need for mixed zones, 

which add considerable complexity to the code. If the boundary between materials 

becomes distorted, then SALE suffers from the same mesh tangling problems as a pure 

Lagrangian code.
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Multimaterial ALE, capable of supporting mixed zones, is more general than SALE, in 

that it removes the restriction on advection through internal material boundaries. The 

external  boundaries (including slide interfaces) are still treated as Lagrangian. In other 

words, the limits of the mesh coincide with the limits of the bodies being modelled.

Some recent multimaterial ALE codes are CALE [23], CAVEAT [24], ALEGRA [25], and 

ALE3D [26]. 
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1.3 Contact

The earliest scientific studies in contact were concerned with friction between rigid bod-

ies. Leonardo Da Vinci studied frictional effects in the 15th century. They were put in the 

form of laws by Amontus in 1699, and further developed by Coulomb in 1781 [27].

However, these early studies did not consider deformable bodies, specifically bodies 

deformed by the force of the contact itself. Contact problems in elasticity were first con-

sidered in the 19th century, with early work done by Poisson, Saint-Venant, Voight, and 

Hertz [27]. Hertz [28] calculated the indentation of spherical elastic bodies into an elastic 

plane, and related geometries. This class of problems is now referred to as Hertzian con-

tact problems.

A similar class of contact problem, known as the Signorini problem, consists of an elastic 

deformable body of arbitrary shape brought into contact with a rigid foundation. The 

actual surface of contact is not known ahead of time, but is computed as part of the solu-

tion. This problem was first studied by Signorini [29]. Even problems of such relative sim-

plicity as Hertzian and Signorini problems prove to be a formidable challenge to solve 

analytically, and are still used today as prototype problems for new methods of solution.
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In a numerical approach to the solution of contact problems, there are two main schools of 

thought. The first approach treats contact formally as an inequality. Consider the two bod-

ies in Figure 1-6.

FIGURE 1-6

g (for gap) is the distance between the two bodies at one point along their boundaries. The 

fundamental constraint, that of impenetrability of two bodies, is written as .

This inequality is combined with the governing equations of the two bodies (note that it 

couples those equations) to form a complete mathematical description of the system. 

Function Theoretical methods, in particular the Calculus of Variations, is now employed 

in converting this system to its variational or "weak" form and solving it. In this conver-

sion, treatment of the inequality is particularly problematical.

The result is that the system of differential and algebraic equations and inequalities is 

reformulated as a minimization problem: the function which minimizes an integral func-

tional is the correct solution to the original problem.

Finally, a numerical method is applied to find an approximate representation of the mini-

mizing function.

g

g 0≥
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There is an enormous body of work supporting variational techniques in general, includ-

ing results about the existence and uniqueness of solutions. The Finite Element method 

itself is grounded in the variational approach, and thus benefits from its solid theoretical 

underpinnings.

It is not the purpose of this work to discuss the variational approach to contact problems, 

which requires a substantial amount of mathematical machinery, but simply to point out 

that such a body of work exists. A good starting reference for this work is [27].

The second approach to modelling contact numerically is to treat the contact in a corrector 

step of a predictor-corrector formulation. During the predictor step the separate position of 

each involved body is calculated independently, from its governing equations, without any 

consideration of contact. Thus there is no coupling of bodies during the predictor step. 

During the corrector step the positions of the separate bodies are adjusted as necessary to 

enforce the impenetrability constraint, and possibly other conditions such as continuity of 

momentum normal to the contact interface. This is the approach taken by hydrocodes.

Three methods have emerged for handling contact within hydrocodes. These are usually 

referred to as the Lagrange Multiplier method, the penalty method, and the "hydrocode" 

method, so-called because it was the method first employed in early hydrocodes. All three 

methods are in use in present day hydrocodes.

Figure 1-7 depicts a sliding interface with most of the information abstracted away. For 

one side, all that is shown is one node, s1. For the other side, only one face is shown, the 

face bounded by m1, m2, m3, and m4, and which is the closest face to s1. Contact enforce-
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ment in this case, for now ignoring the possibility that the surfaces may separate, amounts 

to ensuring that s1 lies on the surface formed by m1, m2, m3, m4.

FIGURE 1-7

The Lagrange Multiplier method, which in its original form requires an implicit time inte-

gration method (Section 1.2.4), enforces the constraint by adding an equation to the set of 

equations that must be satisfied at the new timestep. To balance this it adds a new 

unknown, the "Lagrange multiplier", which turns out to equal the force required to satisfy 

the constraint. The added equation expresses algebraically that the new position of s1 must 

lie on the surface bounded by m1, m2, m3, m4. Thus it links these new unknown positions 

together.

The penalty method avoids the addition of any new unknowns. Instead the motion of the 

nodes, neglecting initially any contact forces, is calculated as a predictor step. If this 

results in penetration of a contact face by a contact node of the other side  then, as a cor-

rector step, a nodal restoring force is applied which is perpendicular to the face, and pro-

portional to the amount of penetration. It is as though there is a spring between the node 

and the surface, but only when the node penetrates the surface.

s1

m2

m3

m4

m1
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The penalty method is a simple, cheap method of contact enforcement for many structural 

problems. However, neither it nor the Lagrange multiplier method work well in shock 

wave applications where pressures greatly exceed the yield strength of the material. In this 

regime it has been found that the original method of the 1960’s hydrocodes, with a number 

of improvements in the area of symmetry, void opening and closing (or impact) and more 

complex geometries such as intersecting and overlapping slides, is still the most accurate 

way to model shock waves as they cross slide interface boundaries.

The hydrocode method treats the two sides of the slide interface as though they were 

merged, during calculation of acceleration normal to the surface. That is, the mass from 

the two sides is lumped locally into a center-of-mass system, and the system accelerated 

by pressure exerted by each side on the other. In the absence of friction, tangential velocity 

for each node is treated independently.

A variant of the hydrocode method is used in the implementation described in the follow-

ing chapters. It is described in more detail in Section A.11.
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1.4 Examples

This section gives two examples of problems which involve contact surfaces. Ale3d was 

employed to solve both of them.

1.4.1 The Roller Problem

In this problem an aluminum ingot is fed between two steel rollers, during which its thick-

ness is reduced by approximately 3% for this run. The contact surfaces are between the top 

and bottom of the ingot and the rollers, and between the top and bottom of the ingot and 

the table. The ingot is fed into the rollers with about the same velocity as the linear rolling 

speed. Once the ingot is in contact with the rollers frictional force pulls the ingot through. 

The thermal behavior of the coupled ingot-roller system is also modelled.

Figure 1-8 shows the computation just before the ingot touches the rollers, and after it is 

halfway through.

FIGURE 1-8

1.4.2 Explosion in Bunker

In this problem a four-room concrete bunker is modelled, together with the atmosphere 

inside the bunker. An explosion is set off inside the bunker, and the hot gases expand. The 

undisturbed air and the hot gases share the same mesh, and are represented by mixed 
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zones (Section 1.2.7). The hot gases are advected into the initially pure air zones. This 

problem uses the full ALE functionality. The gas-wall interface is represented by 29 sepa-

rate contact surfaces. 

The following figure shows the state at three different times. In these pictures a slice 

orthogonal to the vertical axis is taken.

FIGURE 1-9

t = 0.0                                  t = 150.0 usec                       t  = 600.7 usec 
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2    PARALLEL CONTACT

2.1  Parallel Computers and Programming Paradigms

Over the years the evolution of computer systems has been relentless and rapid. In some 

cases the advances have been seemingly without cost to software developers. The newer 

machines were simply faster, memories larger, the operating systems more full-featured 

and easier to use. In other cases, to use a new class of architecture efficiently meant soft-

ware changes, in some cases total rewrites, of leading-edge applications. For instance, 

when vector machines, almost synonymous with Cray computers, arrived on the scene, it 

was necessary to "vectorize" the code: i.e. arrange loops wherever possible so that the 

compiler could recognize the independence of separate iterations, and thus could pipeline 

the arithmetical operations. To do so led to improved performance by better than an order 

of magnitude. Vector machines achieve their performance through a form of parallelism. 

Arithmetical operations (e.g. floating point multiplications) are broken down into a num-

ber of substeps, and a separate functional unit designed to specialize in each substep. The 

overall arithmetic unit is then organized into a pipeline, and the functional units are kept 

busy simultaneously, each working on its stage with a different set of operands. So while 
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it may take 16 cycles to produce a given result, a new result is ready every cycle thereaf-

ter, for a parallel speedup of 16 (neglecting latency in "priming" the pipeline).

One fortunate aspect of the work of vectorizing applications was that it could be done 

incrementally. The most time-intensive loops could be tackled first, for the greatest gain, 

then more of the code gradually vectorized until it became not worth the effort to go fur-

ther.

There is a fundamental limit to how far this style of heterogeneous  parallelism can be 

taken, since an arithmetic operation can only be practically split into so many substeps. To 

grow beyond this it was necessary to seek parallelism at a higher level than the single 

instruction. This became possible through a new type of architecture which had multiple 

independent CPUs which shared the same memory. Today this type of machine is called a 

symmetric multiprocessor, or SMP, or simply a shared-memory machine.

With these machines it is possible to take advantage of the parallelism in loops at a higher 

level, by dividing the number of loop iterations into subsets, and assigning each subset to a 

different CPU. If the loop count is large (in the thousands or millions) and if each iteration 

is independent, as is also required for vectorization, then many CPUs can work in concert 

to achieve the computation.

This style of parallelism was sometimes called microtasking. It is still prevalent today on 

shared-memory machines, and is typically implemented via "threads", though threads are 

not limited to loop-level parallelism.
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In processing the iterations of a loop the same set of instructions (i.e. the loop body) are 

executed over and over, but with different data. This observation became codified in the 

term SIMD (Single-Instruction-Multiple-Data) and led to a class of machines that had 

many processing units that all executed the same instruction simultaneously, each with its 

own data. SIMD machines enjoyed some success and popularity in the 1980s and 1990s, 

but ultimately proved to be too inflexible outside the loop level, and so did not deliver on 

their promise of performance for more complex real-world application.

It is difficult to design a machine with many CPUs sharing the same memory. Synchroni-

zation and bandwidth of memory access become bottlenecks. Practical SMPs today are on 

the order of 4-16 CPUs, although larger machines have been built. The memory bottle-

neck can be overcome by giving each CPU its own piece of the total memory, effectively 

partitioning the memory. Each CPU can then only directly read its local memory. In order 

to access data in another CPU’s memory, the other CPU must read it, and then send it in a 

message. This kind of computer is called a distributed memory machine. A program that 

runs in parallel on a distributed memory machine is called a message-passing program. 

Unlike an SMP there is no inherent size limitation to distributed memory machines. The 

designer can simply keep adding CPUs and memory, hooking them together in some kind 

of communication network.

However, the simplicity of the hardware is balanced by the complexity of the software 

required to efficiently use the machine. Converting a serial code into an efficient scalable 

message passing program, when possible at all, is a major undertaking, much more labor-

intensive than vectorizing or microtasking (threading) a serial code. Frequently the best 



      34
course is to start from scratch, retaining perhaps the computational kernels of the serial 

code.

A prevalent method of parallelizing simulations such as hydrocodes for distributed mem-

ory machines is spatial domain decomposition. Since the overall problem is discretized as 

a mesh in space, the mesh can be divided into more-or-less compact connected sub-

meshes, and each submesh assigned to a different processor. That processor then has pri-

mary responsibility for the data in its submesh, such as calculating stresses, advancing 

nodal positions, etc. When necessary the processor communicates via message-passing 

with other processors, typically processors assigned to adjacent submeshes.

This style of development allows the developer to retain the original serial approach (if 

there is one) to the greatest extent possible, since the work performed in each submesh is 

for the most part the same work as performed on the whole, but for only a subset of the 

data. Of course, the parts must still be "glued" together with communications, and in this 

case the "devil is in the details".

In the past several years there has been a strong trend for the most powerful high-perfor-

mance computers to combine the SMP and distributed memory models; that is, to combine 

a cluster of SMPs, each with a moderate number of processors, via a high-performance 

communication network. This gives software developers some added flexibility, as they 

can still use the machines as pure distributed memory (by ignoring the shared memory 

within the SMP and still employing message-passing, even to other processors on the 

same SMP) or they can capitalize of the shared memory by threading the code on each 

SMP so that multiple processors work in a microtasked fashion on a single submesh. 
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Employing both paradigms is optimal, but involves more work on the part of the imple-

menter.

2.2  Scalability

Scalability refers to the performance behavior of an algorithm, as some aspect of a prob-

lem to which it is applied is increased in size. For instance, the summing of two vectors is 

said to scale linearly, since the operation count and time to completion are linearly related 

to the size of the vectors. Dense matrix multiplication, on the other hand, scales quadrati-

cally. A sequential algorithm is called scalable if it scales linearly with problem size.

In the case of a parallel algorithm, there are two types of size increase to consider. These 

are problem size and machine size - i.e. the number of processors applied to the problem.

If the problem size is held constant as the number of processors is increased, then the best 

one could reasonably hope for is a halving of run time for each doubling of CPU count. 

Insofar as an implementation accomplishes this it is said to be "perfectly" scalable. To 

express this more formally, define Tn,p as the time it takes to execute a problem of size n 

on p processors. Then for a perfectly scalable code we would have

In order to express the actual degree of scalability we define the fixed-size speedup to be:

Tn p,
1
p
---Tn 1,=

Sf
Tn 1,
Tn p,
----------=
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For perfect scalability we would have . To compare actual to perfect scalability we 

define the fixed-size efficiency as

The closer E is to 1 the more scalable the algorithm is. However, for a fixed problem size 

the efficiency must inevitably go down at some point, no matter how "embarrassingly par-

allel" the application, if for no other reason than because at some point the work will be 

spread so thinly that some processors have no work at all, while the rest have the smallest 

possible unit. Still, it is the most "honest" measurement of scalability, since any given 

problem is of some fixed size, and it is useful to know how much can be gained by running 

the problem in parallel.

Another measure of scalability considers the performance when problem size and proces-

sor count are increased proportionally. For instance, in a hydrocode this would mean hold-

ing the number of zones per processor constant while increasing the total problem size and 

processor count. In this case the scaled speedup is defined as:

Note that in this case we are comparing two separate problems; one of size  and one of 

size . scaled efficiency is then defined similarly as 

Sf p=

Ef
Sf
p
-----=

Ss
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Tn p p,⋅
------------------=

n
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Scaled speedup is a more generous measure of scalability than fixed-size scalability, and 

so is considered suspect by some. But for the most part it is an accepted measure, particu-

larly when considering very large problems that push the memory resources of even large 

parallel machines. For how is one to run such a problem on one processor, for compari-

son?

From the fixed-size point of view, the goal is to run the same problem in less time by add-

ing processors. From the scaled point of view, the goal is to run larger problems in the 

same amount of time by adding processors. Which point of view is appropriate depends on 

which goal is sought.

The results of a scaled timing study for explicit time integration hydrocodes can be mis-

leading. Typically when a problem is scaled, its overall dimensions do not change. Instead 

the mesh is refined, and each individual cell becomes smaller. There is a fundamental sta-

bility limit on maximum timestep that is dictated by the smallest cell size (the Courant or 

CFL Condition [41]), and so as the problem is scaled the timestep must be decreased. 

Even if an algorithm scales perfectly in its time to execute a single cycle, if its timestep 

must be decreased, then it will require more cycles to reach a given physical time. The 

global behavior is not scalable. If a timing study is run for a fixed number of cycles, and 

scalability results do not take into account the size of the timesteps, then the full picture is 

not there.

Nevertheless results for scaled timing studies are often given for a fixed number of cycles. 

The results in Chapter 5 of this document for scaled times, in fact, are given for a fixed 

number of cycles. The contact algorithm itself is not subject to the Courant Condition, but 
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is embedded in a code which is. Also there is another reason (Section A.11.12) why 

smaller contact faces require shorter timesteps. Thus any scaled timing results must be 

understood for what they are and also for what they are not.  

Scalability issues may be separated into three classes: memory scalability, computational 

scalability, and communication scalability. Memory scalability requires that, as a problem 

is scaled, the data can be truly partitioned and stored in the distributed memory of the var-

ious processors. If, for instance, a problem size-dependent array must be stored locally by 

each processor, then the algorithm is not memory scalable, and at some point the per-pro-

cessor memory will become saturated, even though the total distributed memory continues 

to grow as the problem is scaled.

Computational scalability requires that any computations applied to the entire problem 

space be factorizable into subtasks that can be executed in parallel on the various proces-

sors. For instance, if each processor is required to sort a problem size-dependent array, 

then the algorithm is not computationally scalable, since work per processor will grow as 

the problem is scaled.

Finally, communication scalability requires that, as the problem is scaled, the percentage 

of total time spent passing messages does not go up. If it does then the total time will go 

up, since it is the sum of computation and communication time (with some potential over-

lap). To be perfectly scalable, an algorithm must have no global communication since, 

even with optimal algorithms the number of  messages sent by any given processor will 

grow as the log of the number of processors. Some global communication is usually inev-

itable as for instance, in calculation and communication of the next global timestep. How-
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ever, any code that aspires to be even moderately scalable must employ strict discipline in 

minimizing global communication.

On the other hand local or "nearest neighbor" communication is entirely consistent with 

scalability since, as problem size increases the actual dimensionality of the problem 

doesn’t change, and so the number of nearest neighbors remains bounded.

2.3  The Parallel Contact Problem

The problem of parallelizing a finite element or finite difference code without slide inter-

faces is fairly straightforward via a technique called Domain Decomposition, and has 

been done many times. The first step is to decompose the mesh into N submeshes, such 

that each submesh contains about the same amount of computational work, and the num-

ber of nodes shared between submeshes is minimized (to ensure minimal communication 

requirements).The mesh decomposition process is typically performed as a preprocessing 

step using a tool such as METIS [30] or CHACO [31].

Each submesh is then assigned statically to a separate processor. Typically this involves 

assigning zones uniquely to processors. Since adjacent zones share nodes, zones on the 

partition boundaries will share nodes with other processors. It is determined during initial-

ization which other processors share mesh nodes with this processor, and communication 

with these "nearest neighbors" is set up. The communication is needed because total force 

on these shared nodes will be the sum of the partial forces computed by each of the shar-

ing processors.
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Each cycle all the processors will swap partial forces on the shared nodes. Because both 

the mesh connectivity and the submesh-to-processor assignment are static, this communi-

cation pattern is also static and thus is relatively simple to set up.

When slide interfaces are introduced, the picture is much different. Consider Figure 2-1.

FIGURE 2-1

The upper block is free to slide around on the lower block under some external force. The 

grid in this figure represents the domain decomposition. That is, each grid element actu-

ally represents the entire submesh  that is mapped to a single processor.

Just as in a single mesh, to calculate the force on a contact node it is only necessary to 

know its immediate environment. But unlike the single mesh, this environment is not dic-

tated only by the mesh connectivity, but also by the current relative positions of the two 

contact sides. This relative position is not static, but must be determined as part of the 

problem which changes continually. In Figure 2-1 the processor owning the upper block 

need only communicate with the processors owning the two lower left submeshes. But in 
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Figure 2-2 at a later time it needs to communicate instead with the processors owning the 

two upper right submeshes.

FIGURE 2-2

This shifting communication pattern makes contact a much more difficult problem to par-

allelize in a scalable fashion than the single mesh problem. 

2.4  Recent Parallel Contact Algorithms

2.4.1  The Volume Checking Algorithm

In a pair of papers [32] [33], the authors describe an algorithm for parallel contact detec-

tions and enforcement. The problems they address consist entirely of structural shell ele-

ments, and any element can potentially come into contact with any other element.

The overall problem is decomposed into N subsets that are load-balanced with respect to 

the non-contact aspects of the computation. It is not possible to predict ahead of time 

where contact will occur, so this aspect cannot be included in the static load balance. Each 

processor "owns" an initially compact subset of the shell elements.

The following will focus on the work done by an arbitrary processor, called processor A. 

Each processor in the machine does the same, on its own data set. During a given cycle, 
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processor A determines a "bounding box", the smallest rectilinear region containing all its 

local elements. In a global communication pass, each processor then shares with all other 

processors the location of its bounding box, and receives the locations of theirs.

Processor A is then in a position to determine which other processors have bounding 

boxes that intersect its own. Where there is no intersection, no contact is possible. On the 

other hand, if there is non-empty intersection then contact is possible and must be further 

investigated. In order to do this processor A needs the details (positions, velocities) of all 

the elements contained in the intersecting bounding boxes. This is obtained via a commu-

nication pass whereby each of the intersecting regions is sent from its home processor and 

concatenated into a "contact domain" on processor A. Meanwhile in a symmetric opera-

tion, processor A sends all its data to every other processor that intersected it, and those 

processors each build their own contact domains.

Each processor now has all the data it needs to find any contact that occurs involving its 

own local elements, and to resolve the results of that contact.

The authors found, in running on 128 processors, that the chief obstacle to parallel effi-

ciency in their implementation was due to load-balance. Only some subset of the total 

problem would be in contact at any point in time. Since the contact domains were tied to 

the original decomposition, those processors whose local element set were not in contact 

could do nothing but wait for the contact calculations to complete. Another problem was 

that, as time went on, the initially compact bounding boxes would tend to spread out, and 

more processors would have non-empty intersections, leading to increased communica-

tion.
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2.4.2  DYNA3D

Dyna3D is a well-known explicit finite-element transient dynamics code [12]. In its serial 

version its treatment of contacts has been well-documented [34], [35]. The parallel version 

of the code, ParaDyn [36], has adopted dual strategies to deal with contact surfaces. In 

both these strategies a second decomposition, separate from the static bulk ("primary") 

decomposition, is employed to treat the contact.

In the first strategy, which they refer to as local contact, regions of contact are somewhat 

predictable, as for instance when a tool bit meets a surface, and it is possible to specify 

pairs of surfaces, historically called master and slave, which will contact each other, even 

though specific details of which nodes and faces contact may not be known a priori, and in 

fact will change over time. For a complex engineering structure there may be many such 

pairs of surfaces. 

The Dyna3D approach is to assign each such contact pair to a separate processor to be 

worked on in parallel. Since this assignment is static the communication, whereby nodal 

variables such as position and velocity are sent from the primary decomposition home to 

their assigned contact domain, can be set up during initialization, and is essentially no 

more complex in this respect than a finite element code without contact surfaces.

If the problem has many contact surfaces, this approach is certainly an assistance in speed-

ing up overall execution time, but it clearly will not scale beyond the number of indepen-

dent contact surfaces. Even within this range load-balance is beyond the control of the 

algorithm, and depends wholly on the problem definition.
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The second Dyna3D strategy, referred to as arbitrary contact, assumes a single surface 

(which need not be connected). In other words, the restriction that some part of the sur-

face, designated the master, can only come into contact with some other disjoint part of 

the surface, designated the slave, is removed. This generalization is required to handle 

problems such as beam buckling, where the surface bends until it contacts itself, and 

many-body simulations, where it cannot be predetermined which bodies will collide with 

each other. In this case, the union of the surfaces of all the bodies is the single contact sur-

face.

The Dyna3D parallel arbitrary contact strategy involves a spatial sort of the contact nodes 

in one, two or three dimensions depending on the problem geometry and the number of 

processors. The sort employed is known as a bucket sort and is documented (for the serial 

version) in [35].

The goal is to restrict the number of faces that must be checked for penetration by a given 

contact node. To accomplish this, the algorithm first searches for the nearest contact node 

(excluding itself and any other nodes immediately adjacent to it in the mesh connectivity). 

Then any faces connected to the nearest node are candidates for penetration.

The bucket sort consists of dividing the problem space up with a 1D, 2D, or 3D grid, then 

assigning each contact node to the grid zone, or "bucket" into which its coordinates place 

it. The size of the buckets are chosen so that contact is only possible between nodes and 

faces that are within the same or immediately adjacent buckets.

The contact decomposition then consists of assigning some compact subset of buckets to 

each processor, and is determined dynamically based on the current population of the 
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buckets, in order to preserve load-balance. During the contact phase a global communica-

tion pass is used to inform all processors of the bucket-processor assignments, and they 

can then determine where to send their local contact nodes for the detailed contact detec-

tion and enforcement calculations.

2.4.3  PRONTO3D

Pronto3D [37] is another explicit finite element transient dynamics code, similar in its 

application scope to Dyna3D. In addition it includes a Smoothed Particle Hydrodynamics 

(SPH) module that supports solid-fluid interface and fragmentation problems. Like 

Dyna3D it uses a separate problem decomposition for contact  in order to load balance the 

contact calculations. The SPH calculations also employ a separate decomposition.

Pronto3D uses a method known as Recursive Coordinate Bisection (RCB) in order to 

decompose the problem into contact domains. The overall problem space is first divided 

by a plane perpendicular to one of the coordinate axes. The position of the plane is chosen 

so that half of the contact nodes and faces fall on each side of the plane. To accomplish 

this, a first guess at the plane’s position is made, then each processor adds up the number 

of its local (i.e. primary decomposition) contact nodes and faces it has on either side of the 

split. All processes then communicate, determine how far off the first guess was, move the 

plane’s position accordingly, and iterate. Typically a few iterations are sufficient.

Then the processors are divided into two equal groups, and one group assigned to each 

side of the split. If a given processor owns any nodes or faces that fall on the other side of 

the split, it sends them to a "partner" processor assigned to the other side.
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After this step is done, the same operation is performed recursively for each of the half-

spaces created by the first bisection, only now each side splits its set of half the processors 

into two sets, each with one quarter of the processors. Again, if a processor finds that it has 

nodes or faces that belong to the other half of the bisection (either from the primary 

decomposition, or because they got passed during the first bisection) it passes them now to 

a partner processor in the other half of the active bisection.

When the last recursive level of bisection is complete, each processor will have its own 

spatial contact domain, and will have all the nodal and face information that it needs in its 

local memory. However, because the nodes and faces are moving, it is necessary to also 

have data from surrounding regions, which are assigned to neighboring processors. To 

accomplish this, each processor needs to find out who its neighboring processors are. This 

depends on the result of the RCB: i.e. where specifically the cuts were made. Another 

round of global communication distributes this information so that all processors know the 

regions assigned to all other processors. From this they can calculate who their neighbors 

are, and exchange information about their respective contact nodes and faces.

At this point each contact domain has enough information to enforce contact for its local 

nodes and faces. It sorts its list of local nodes in each dimension, and uses these sorted lists 

to reduce the number of collision possibilities. For the contact enforcement, once it has 

determined the collisions, it uses a version of the penalty method (Section 1.3).

Finally, the results of the contact enforcement on a given node are sent back to the proces-

sor that "owns" the node in the primary decomposition.
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At the beginning of the contact phase at every timestep (except the first) the contact nodal 

and face data are sent to the processor that they were assigned to, via the RCB, during the 

previous cycle. This provides a good "first guess" for the current RCB step, so that after 

this initial send from the primary domain to the old contact domain, only a small subset of 

the nodes will typically need to be moved again. Or from another perspective, the coordi-

nates of the RCB cut this cycle should be close to the cut coordinates of the previous 

cycle.

The scalability of this algorithm has been demonstrated for some problems on up to 3,000 

processors [38], [39].

2.4.4  ALE3D

The ALE3D code developed at LLNL is a multiphysics ALE finite element hydrocode 

that includes thermal diffusion, chemistry, and incompressible flow models as well as 

explicit and implicit continuum mechanics [26] [40]. In the late 1990s the serial version 

was completely rewritten as a message-passing parallel code. The contact algorithm 

described in detail in the following chapters has been implemented in ALE3D, and is cur-

rently in production use.

As in Dyna3D and Pronto3D, ALE3D makes use of a separate decomposition for contact 

calculations. This decomposition is partly static, partly dynamic. The master sides of the 

contact surfaces are permanently (statically) assigned to various processors in a load-bal-

anced fashion (Section A.6.8). The slave sides are assigned dynamically: each cycle a 

given slave node is assigned to the contact domain of the corresponding master node clos-
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est to it. Because of surfaces sliding this domain assignment will, in general, change over 

the course of time.

The slide interfaces treated in ALE3D are essentially the same as the local contact inter-

faces in Dyna3D. The serial ALE3D code also implemented arbitrary contact, but there 

has been very little demand for arbitrary contact in the ALE3D user base, and it has not yet 

been implemented in the parallel code.

The assumption of local contact is that a node’s nearest neighbor on the other side of a 

contact surface will not change very much, in terms of the connectivity of the surface, in a 

single cycle. This constraint is more formally defined in Section A.11.12. The difference 

between ALE3D and Dyna3D local contact is that, in ALE3D, there is no restriction of a 

given contact surface to a single processor. It is a fully general parallel implementation. 

While it is not as general as arbitrary contact, as implemented in Dyna3D and in 

Pronto3D, this loss (not an issue with ALE3D users) is balanced by the ability to create a 

truly scalable algorithm, as described in the following chapters. There is absolutely no 

global communication in the ALE3D contact algorithm. Thus it will never be a limiting 

factor in the overall scalability of ALE3D.
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3    THE METHOD

3.1  Introduction

In this chapter we discuss a new method for implementing contact on a parallel distrib-

uted-memory machine using only local communication. This allows the algorithm to be 

scaled to an arbitrarily-large system. We believe this is the first implementation of contact 

surfaces that can make this claim.

Contact problems may be separated into two phases: contact detection and contact 

enforcement. Contact detection determines when and where contact occurs. If the contact 

is persistent as in sliding surfaces, it determines which nodes are opposite which faces 

each cycle. In its most general setting, contact detection is an O(N2) problem. Each node 

on the surface must be compared against each face to see if contact has occurred during 

the current timestep. Once contact is detected, then contact enforcement is applied to 

model the forces which act across the contact interface.

The order of complexity of the detection problem can be reduced by several techniques. 

For instance, the nodes and faces may be sorted into a number of "bins" based on coordi-

nates. Then contact need only be checked for in the same and neighboring bins. The sort 
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itself is O(NlogN). If N = m x p, where m is the number of nodes or faces in a bin, and p is 

the number of bins, then the search is O(p x m2), which is only 1/p of N2. Dyna3d uses this 

approach in its single-sided surfaces [35]. The approach taken by Ale3d, which is the 

method upon which this work is based, uses the mesh topology, or connectivity, of the 

contact surfaces, and makes the assumption that nodes and faces will only move a short 

distance in a single timestep with respect to the opposing side. Thus it can restrict its 

search for nearest nodes to the mesh neighborhood of nearest nodes the previous cycle. If 

contact occurs, it must be in the neighborhood of nearest nodes.

When the contact problem is moved to a parallel, distributed memory environment the 

detection problem becomes more difficult because, in general, a given node and the set of 

its potential contact faces are not on the same processor. Furthermore, as the problem 

evolves the processor(s) containing the potential contact faces may change. This is not 

because the nodes and faces themselves move from one processor to another, but because 

the sides of the surface (or portions of the single-sided surface) are in motion relative to 

each other.

On a given cycle we can define the communication topology to be the arrangement of 

which processors communicate with each other to send the node and face information 

from wherever it is permanently located to where the detailed contact detection and 

enforcement will be performed. Since the detection search is local, as described above for 

Ale3d, and since contact enforcement is inherently local (for explicit codes), the number 

of processors that need to communicate with a given processor is bounded. So the commu-

nication topology is of "local" form and the communication can be done scalably.
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However, there is a second problem besides sending the contact information where it is 

needed, and that is figuring out where it is needed in the first place, or in other words, 

evolving the communication topology. It is not obvious how this can be done scalably 

using only local communication. If processor A has no communication with processor B 

at one time, how do they simultaneously decide at a later time to start communicating, 

without any shared global context?

The primary original contribution of this thesis is the demonstration that scalable evolu-

tion of the communication topology for parallel contact using only local communication is 

possible, by a description of one such implementation.

3.2  Authorship

The starting point for this work was the existing Ale3d serial contact algorithm, and a set 

of decisions about the parallel implementation:

        1. The parallel contact calculations would use a decomposition independent of the 

static bulk decomposition. Each cycle all required data would be transferred from 

bulk domains to appropriate contact domains, and the results returned to bulk 

domains.

        2. The same master nodes would be assigned to the same contact domains each cycle: 

i.e. the master side decomposition would be static.

        3. Each slave node would be assigned to the contact domain of its nearest master 

node. Since the nearest master node will change as the surfaces slide, the slave 

decomposition would be dynamic and not known in advance.
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Given this initial set of assumptions, the goal was to create a distributed, scalable algo-

rithm that could determine what data needed to be sent where and orchestrate its transfer. 

This algorithm would be implemented in a new parallel version of Ale3d.

An initial version of parallel Ale3d slides was developed by the author in close collabora-

tion with another engineer, Jim Maltby. Many hours were spent discussing the ideas which 

were eventually implemented. This first version, unfortunately, was not fully scalable. Its 

performance on large problems was acceptable on machine configurations up to about 256 

processors, but between there and 512 processors there was a drastic rolloff in parallel 

efficiency.

This led to a serious reexamination of the original design and the search for a more scal-

able approach. This work was done independently by the author, and the resultant design 

is documented in this thesis.

It must be emphasized that the original work described here is concerned with the distrib-

uted nature of the parallel contact problem, and with solving the problem in a scalable 

fashion. The actual contact enforcement, once all necessary data has been transferred to 

the appropriate places, is simply an adaptation of the corresponding serial Ale3d contact 

algorithm.

3.3  Limitations

The method developed in this thesis is specific to 2-sided contact. A 2-sided contact sur-

face is one in which contact is known ahead of time to only occur between specific pairs 

of surfaces. Also, movement between the two sides is assumed to be continuous. Thus, if a 
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node "a" on one side is the closest node of that side to a node "b" on the other side during 

a given cycle, then on the next cycle the closest node to "b" will be some node in the mesh 

neighborhood of  "a" (see Section A.11.12). In the search for the closest point on the other 

side, we can always start with the closest point the previous cycle and just do a local 

search. Two examples of 2-sided contact problems are given in Section 1.4.

On the other hand, in what are sometimes called single-sided surfaces, any node may 

come in contact with any face of the same surface. A naive implementation would require 

an N2 search each cycle to detect which nodes and faces are in contact. In practice, how-

ever, the nodes may be sorted in one or more dimensions as discussed in Section 3.1, in 

order to reduce the number of "buckets" that need to be examined for nearest neighbors. 

The sort may be not be necessary every cycle, if limits on the amount a node may move in 

a cycle can be established.

A prominent example of single-sided surfaces is the study of buckling, such as occurs in 

car crash simulations[35]. Another is the study of multiple colliding bodies, such as bil-

liard balls. This problem can be posed using 2-sided contact surfaces. For instance, each 

ball’s surface is the master side of its contact surface, and the surfaces of all other balls 

combined represent the slave side of that surface. Thus the surface of a given ball repre-

sents at the same time one master surface and many slave surfaces. But it is much more 

direct to simply treat all surface area as one single-sided surface.

Single-sided contact is more general than 2-sided contact, since any 2-sided contact prob-

lem can be reformulated as single-sided contact, but not vice-versa. However, for prob-

lems where contact between specific subsets of the surfaces involved can be predicted, 
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and in particular for surfaces where sliding rather than impact dominates, 2-sided contact 

is much cheaper. The serial Ale3d code had a single-sided contact capability, but this has 

not yet been ported to parallel Ale3d due to lack of demand by the Ale3d user community.

3.4  Definitions

The problem mesh is the discretization of one or more physical bodies into finite element 

zones (also called cells). An example problem mesh is shown in Figure 3-1. In this case 

there are three disjoint bodies, and three corresponding disjoint submeshes.

FIGURE 3-1

In order to simulate the dynamic behavior of the bodies on a parallel machine, the mesh is 

partitioned into a number of bulk domains. Typically each bulk domain will be assigned 

to its own processor with separate memory. In order to share data, the processors send 
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messages to each other. Figure 3-2 shows a typical bulk decomposition into 8 domains, 

where each color represents a different bulk domain.

FIGURE 3-2

Some subset of mesh faces forms the boundary surfaces of each submesh. These are the 

boundary faces of the problem mesh.

A (two-sided) contact surface consists of a pair of boundary face subsets, called the mas-

ter side and slave side of the contact surface. These subsets are specified by the user, and 

presuppose some knowledge of which parts of the bodies will come in contact. In 

Figure 3-3 the preceding example has been stripped down to two contact surfaces.

FIGURE 3-3
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In this example the red and blue surfaces form the master and slave sides of one contact 

surface, while the green and yellow surfaces form the master and slave sides of a different 

surface. Each side of each contact surface is itself a 2-D mesh. The relation between the 

various faces and nodes of each mesh is fixed, and is called the connectivity of the mesh. 

Each face on a contact side always includes the same nodes, and each node is a vertex for 

the same set of faces.

The neighborhood of a node is defined for our purposes to include all the nodes within 

two faces of the specified node. Figure 3-4 shows the neighborhood of node "a" as all the 

circled nodes.

FIGURE 3-4

Contact enforcement in explicit codes is essentially a local process: Each "patch" on one 

side of a contact surface is only affected by a patch directly opposite it on the other side. 

But the opposing patch may be continually changing as the two sides move relative to 

each other. To make this more precise, we start with the definition of order node. The 

order node of a given node is the closest node on the other side of the surface. Each con-

tact node has an order node each cycle, which is in general constantly changing as the 

problem evolves. There is a limit to the amount of change allowed in a given cycle, how-

ever. The order node of a particular node next cycle must share a face with its order node 

a
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this cycle. In other words there must exist a face on the opposing side for which the previ-

ous and current order node are both vertices.. This allows us to limit the search for the new 

order node each cycle to a local search.

The locale  of a contact node consists of the node itself, its neighborhood, its order node, 

and the neighborhood of its order node. The locale is a more precise definition of the "two 

opposing patches" mentioned earlier. The locale of a node is the minimum amount of state 

required in order to perform the contact enforcement and subsequent contact detection 

update on that node. In Figure 3-5 the locale of node "a" consists of all nodes marked by 

open circles.

FIGURE 3-5

In order to parallelize the work of contact enforcement, the contact surface is partitioned 

into a number of contact domains, and each contact domain is assigned to a processor. 

Note that a given processor will hold both one or more bulk domains, and a contact 

domain. The nodal data "lives" in the bulk domains, but is sent to the contact domains 

each cycle for contact enforcement. The updated nodal data is then returned to the bulk 

domains. The specific pattern of which bulk domains communicate with which contact 

domains on a given cycle is an example of a communication topology, which is further 

discussed below.

 a 
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A contact node is assigned to a particular contact domain if its state is updated and 

returned by that contact domain, in the process of contact enforcement. The master nodes 

are statically assigned to contact domains: a given master node is assigned to the same 

contact domain each cycle. A slave node, on the other hand, is assigned to the contact 

domain of its order node. As the order node changes during the course of relative move-

ment, so may the contact domain to which a slave is assigned.

By communication topology we mean the overall organization of which processors talk to 

each other. The cross-section of the topology for a given processor is all the processors it 

talks to.

The two characteristics of the topology that we are interested in are:

        1. static vs. dynamic, and

        2.local vs. global

If the topology is static, each processor talks to the same set of other processors (its 

"neighbors") each cycle. If it is dynamic its set of neighbors may change each cycle.

Suppose that we define a scaled series of related problems, arrived at for instance by 

increasingly refining the mesh for some set of interacting bodies, and suppose we run 

these on a proportionally increasing number of processors, such that in each instance 

about the same number of zones or the same number of contact faces are assigned to a 

given processor. Then the communication topology is called local (or nearest-neighbor) if 

there is a fixed upper bound to the number of other processors that a given processor talks 

to, regardless of problem size. For instance, if bulk domains supply nodes to a contact 

domain, and if the number of nodes per contact domain is fixed as the problem grows, 
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then the absolute upper bound on the number of bulk domains that need to talk to that con-

tact domain is equal to the number of nodes sent to the contact domain. In practice data 

layout tends to have a geometric locality, and for 2-D contact surfaces the number of 

neighbors (per side) will be in the neighborhood of 9.

On the other hand, a global topology is one in which, as the overall number of processors 

grows, so does the number that a given processor talks to. The archetype of this topology 

is all-to-all communication.

3.5  Contact Domain Requirements

Some subset of the contact nodes is assigned to each contact domain, or CD, each cycle. It 

is the job of the CD to calculate the force on each of its assigned nodes due to the other 

contact side, to advance the position of each of its assigned nodes, and to update its order 

node based on the new positions.

Each master node is assigned to the same CD each cycle. Slave nodes, on the other hand, 

are assigned to whichever CD their master node is assigned to, and this will change from 

cycle to cycle.

In the rest of this chapter, simplified 1-D diagrams will be used to represent the contact 

surface. Also, node neighborhoods will only include nodes within one face (or segment, in 

1-D) of a given node. This makes the description of various scenarios less cluttered, while 

the extension to 2-D surfaces should be obvious .

In Figure 3-6 a contact surface is shown at two different times. At time t1, the arrow from 

s4 to m3 means that s4’s order node is m3 (alternate wording: s4 orders on m3.). m3 is 
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assigned to CD 5, so s4 is also assigned to CD 5. At a later time t2 the slave side has 

moved and now s4 orders on m4, so s4 is assigned to CD 6.

FIGURE 3-6

If a node is assigned to a CD, the CD also requires the node’s locale in order to update that 

node. Figure 3-7 shows an example of the locale requirements. Given that m9 is assigned 

to CD 5, all of the circled nodes must also be sent to CD 5.

FIGURE 3-7

Remember that this is a "simplified" diagram. In a more realistic diagram each side would 

be a 2-dimensional mesh, and the neighborhoods of m9 and s7 would extend out two  

faces, not one .

Because of the locale requirements of m9, CD 5 needs nodes m10 and s8, even though they 

are assigned to a different CD. m10 and s8 are called ghost nodes of CD 5.

CD 4         CD 5         CD 6     CD 7
m1    m2   m3    m4   m5    m6

  s2   s3    s4        s5      s6      s7

CD 4         CD 5         CD 6     CD 7
m1    m2   m3    m4   m5    m6

             s2   s3    s4        s5      s6      s7

t1                                                                                        t2

CD 4                        CD 5                               CD 6
m6     m7      m8       m9             m10

s5                   s6                s7              s8
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3.5.1  Static Nature of Master Side CD Requirements 

Focusing on the master side requirements of a given CD, there are four sets:

        1. Assigned master nodes

        2.  Neighbors of assigned master nodes

        3.  Order nodes of assigned slave nodes

        4.  Neighbors of order nodes of assigned slave nodes

By  design of the contact decomposition, the same master nodes are assigned to the CD 

each cycle, so the first set is static. Most but not all of the second set will typically also be 

in the first set (Section A.5.2). In any case, since the connectivity of the contact side is 

fixed and the first set is static, the second set is also the same each cycle.

The third set is not strictly static. However, it is always a subset (not always the same sub-

set) of the first set, which is static. This is because a slave is only assigned to the CD if its 

order node is in the first set. Therefore the fourth set is always a subset of the second set.

The point is that each CD has exactly the same set of assigned and ghost nodes each cycle. 

As with all nodes, these nodes also have a static bulk domain home. Therefore the com-

munication topology required to deliver the master nodes from the bulk domains to the 

contact domain and back is also static, and can be set up once for all during initialization. 

Because of its relative simplicity, we will assume the master side communication and 

focus on the slave side from here on.

3.6  Communication Topology Evolution

In order to effect the communication between bulk domains (BDs) and contact domains:
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        1.  Each BD must determine which CDs to send to, and what to send them,

        2.  Each CD must determine which BDs it will receive from.

Both these steps are necessary because each communication requires the sender and 

receiver to explicitly cooperate. We cannot simply send a CD messages from various 

places and have it poll for any messages coming in. It would never know when it had 

waited long enough (unless it waited till it got messages from all BDs, which would imply 

global communication).

Suppose that in cycle n a certain bulk domain and contact domain had no communication 

between them, but due  to the relative movement of the contact sides, during cycle n+1 the 

BD needs to send the CD some of its nodes. Since they are not yet communicating, they 

need to simultaneously but independently decide to start communicating at cycle n+1.

3.7  Bulk Domain Work

Each bulk domain is responsible for determining where to send each of its local nodes for 

contact processing. As discussed above, we will focus on the slave nodes. Each of the 

BD’s local slave nodes will be sent to one CD as an assigned node, and to zero or more 

CDs as a ghost node.

There are three overlapping reasons why a BD might send one of its local nodes to a par-

ticular CD:

        1.  Its current order node is statically assigned to that CD (in which case the slave 

node is also assigned there)

        2.  It is the order node of a master node that is assigned to that CD

        3.  It is in the neighborhood of a slave node that falls into the first or second class.
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The second and third classes are a consequence of the locale requirements for assigned 

nodes. If a node is in the first class it is called a rule 1 generator for that CD, because it 

generates a list of other nodes (its neighbors) that must also be sent to the CD. A node is a 

rule 1 generator for exactly one CD, its assigned CD (which changes dynamically for 

slave nodes.)

A node in the second class is called a rule 2 generator for the CD. It can simultaneously 

be a rule 2 generator for multiple CDs (or none). Figure 3-8 gives an example:

FIGURE 3-8

Even though s3 and m5 are both assigned to CD 2, node s4, which is assigned to CD 3, is 

closer to m5 than is s3, so m5’s order node is s4. m6’s order node is also s4, so s4 is a rule 2 

generator for both CD 2 and CD 3 (and a rule 1 generator for CD 3).

To support all this, each node carries with it two additional items of state:

        1.  Its rule 1 CD

        2.  Its rule 2 CD list

How these become known to the node goes back to the end of the previous cycle. At that 

time the node was assigned to some CD (its rule 1 CD that cycle). After its position, and 

the position of all nodes in its locale, were updated, a new order node was selected from 

among the nodes in its old order node’s neighborhood. The identity of the new order node 

m2        m3            m4             m5         m6

s2                             s3                         s4

CD 1                          CD 2                         CD 3
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was then returned along with the rest of the node’s updated state to its home bulk domain. 

Since the master side decomposition is static, the bulk domain just looks up which CD the 

new order node is statically assigned to, and that is the slave node’s new rule 1 CD.

The rule 2 CD list is built a little less directly. The node was sent the previous cycle to 

some number of CDs as either an assigned or a ghost node. At the end of that cycle the 

assigned master nodes on each of those CDs determined new order nodes. If a particular 

slave node was chosen as order node of any assigned master node(s) on that CD, the slave 

node is flagged. In the return CD→BD communication at the end of last cycle, the CD 

sends to the BD a list of any of the BD’s slave nodes that were flagged.

If a slave node is sent to multiple CDs, any or all of those CDs may returned flagged status 

on that node. Any CD that does so is added to the node’s rule 2 CD list for the next (i.e. 

current) cycle. In the previous Figure 3-8, both CD 2 and CD 3 will return a flag on node 

s4 to the BD(s) where s4 lives, and s4’s rule 2 CD list will be {CD 2, CD 3}.

3.8  BD <-->BD Communication

Consider Figure 3-9:

FIGURE 3-9

The circle represents the neighborhood of node s4. Suppose that s4 has rule 1 CD set to CD 

3. This means that s3, s4, and s5 must all be sent to CD 3. Since s4 is on BD 2, BD 2 can 

s1     s2       s3       s4      s5       s6

BD 1                           BD 2
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look at its rule 1 CD and its neighbors, and determine to send s4 and s5 to CD 3. But how 

does BD 1 know that it needs to send s3 also to CD 3?

The solution we use is rather standard. We create a ghost layer of nodes around each bulk 

domain’s local set. To avoid confusion with the contact domain ghost nodes, we will 

instead refer to these nodes as proxy nodes. For a given BD, during an initialization phase 

the set of local nodes is used to generate the larger set of locals plus proxies, by taking the 

union of the neighbors (i.e. nodes within two faces) of all the local nodes. Then the locals 

are removed, leaving only the set of proxy nodes for the bulk domain, and these are sent to 

all the other BDs for matching against their own local nodes. When a match is found this 

is reported back to the originating BD.

The result is that a static communication topology is established between each BD and the 

other BDs where its proxy nodes originate from, or where its local nodes are proxy. Not 

only the topology, but also the list of nodes to be sent is static. At the beginning of each 

cycle each bulk domain sends to the other BDs in its "neighborhood" (i.e. the BDs that 

have proxy copies of any of its local nodes) the latest rule1 CD and rule 2 CD list for each 

of the shared nodes, and receives the same.

The BD↔BD communication topology is a local, nearest-neighbor topology because it is 

bounded by the number of native nodes times the number of neighbors per node. In prac-

tice each bulk domain will have on the order of eight neighbors (a 3 x 3 grid, where the 

central element represents the local BD, which doesn’t send to itself).
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3.9  Bulk Domain Preparation for Sending

After the BD↔BD communication pass, the bulk domain is ready to package the data to 

send to each of its neighbor contact domains. To do this, it loops through all its local and 

proxy nodes. For each node it looks at the node’s rule 1 CD and rule 2 CD list. If this is the 

first time a CD is encountered it creates a new list for nodes going to that CD, and adds the 

CD to its list of CDs to send to.

If the node is local it is added to the list of nodes being sent to the rule 1 CD (if not already 

on the list) and flags the node as an assigned node. Then, whether the node is local or 

proxy, it adds all the local neighbors of the node to the lists of all CDs in the rule 1 and rule 

2 CD lists (if not already there). 

This satisfies requirement 1 of Section 3.6.

3.10  Contact Domain Preparation for Receiving

As mentioned earlier (Section 3.6), each contact domain must know ahead of time which 

bulk domains will send it messages, in order to post the receives of those messages. This 

determination is actually done at the end of the previous cycle. 

After the order nodes have been updated at the end of the previous cycle, each contact 

domain determines which slave nodes have order nodes that are among its assigned mas-

ters (the CD’s new rule 1 generators) and which slave nodes are the order nodes of its 

assigned masters (the CD’s rule 2 generators). This is a start, but the CD will also receive 

all the neighbors of its generators as well, and these neighbors may not all be from the 

same BDs as the generators themselves (see Figure 3-9). To solve this problem, when a 
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node is sent to a CD some extra data is sent with it called the neighbor BD list. For a given 

node, its neighbor BD list is a list of all bulk domains on which the node is local or proxy. 

If a BD appears in a given node’s BD list, then that bulk domain contains at least one node 

in the neighborhood of the given node, and thus that BD will communicate with the con-

tact domain. 

So the CD finds all slaves that order on its assigned masters, and all slaves that are ordered 

on by its assigned masters, and takes the union of all their neighbor BD lists in order to 

determine which BDs it will talk to next cycle. It does all this at the end of the previous 

cycle, and saves the resulting list in its next time BDs list for use the coming cycle.

3.11  BD --> CD Communication

In this step each CD simply issues receives from each BD in its next time BDs list. Each 

BD allocates a buffer for each CD on its CD send list (Section 3.9). It fills each buffer with 

the state information  for each node in the list of nodes to send to that CD. This state 

includes the node’s neighhbor BD list and either its assigned CD or list of ghost CDs 

(these are discussed in the next section), as well as its position, velocity, order node, etc. 

When the buffer is complete it sends it to the destination CD.

The CD waits until it has received all its expected messages, and then assembles the data 

from all buffers into its piece of the contact surface. Section A.8 and Section A.10 contain 

considerably more detail about this part of the operation.
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3.12  CD<-->CD Communication

A slight difficulty was glossed over in the last section. The statement "the CD finds all 

slaves that order on its assigned masters" is the culprit. Consider Figure 3-10:

FIGURE 3-10

Suppose at the start of the previous cycle s7’s order node was m6, but as a result of relative 

surface movement, at the end of the previous cycle s7’s new order node was m5. Because 

s7 intitially ordered on m6 it was assigned to CD 3, and it is CD 3 that calculated its new 

order node. However, it is CD 2 that needs to know s7’s new order node, so that it will 

know  that it has to accumulate s7’s neighbor BD list into its next time BDs list. 

To accomodate this we define another communication topology, between each contact 

domain and all other contact domains where any of its ghosts are assigned, or where any 

of its assigned nodes are ghosts. This is again a local topology, bounded by the total num-

ber of  nodes in a contact domain, with the typical number of neighbors being on the order 

of eight.

Actually, this communication topology is used several times during the course of the con-

tact calculation each cycle. For example in Figure 3-10, when s7 determined that its new 

m5             m6

s7

CD 1                   CD 2                        CD 3
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order node was m5, it needed the freshly updated coordinates of m5, a ghost node to CD 3, 

in order to make that determination. This is discussed in greater detail in Section A.12.

To construct this topology, for each local node the bulk domain builds a list of all the con-

tact domains it will send the node to as a ghost node. When it sends the node to its 

assigned CD, it sends this list with it. When it sends the node to any other CD as a ghost, it 

sends along with it the information of which CD it is assigned to. Each CD constructs 

from this information a set of CDs where its assigned nodes are ghosts, and another set of 

CDs where its ghost nodes are assigned. Unlike the BD↔BD topology, the CD↔CD 

communication topology is dynamic.

3.13  An Example

A simple example is provided to demonstrate how the communication pattern evolves.  In 

a more realistic example the surfaces would be 2-D, and the node neighborhoods would 

include all nodes within two faces. As a further simplification, all the nodes on one side of 

the surface will exactly match up with a node on the other side, so that the rule 2 CD list 

will only contain the rule 1 CD. Nevertheless this example shows much of the mechanism 

by which BDs and CDs start and stop communicating with each other in the course of con-

tact evolution.
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Figure 3-11 shows the static layout of the contact surface in the six bulk domains of the 

example: 

FIGURE 3-11

The nodes represented by open circles are proxy nodes. From this we can see that the 

static BD↔BD topology is:

        BD 1 talks to {BD 2}

        BD 2 talks to {BD 1, BD 3}

        BD 3 talks to {BD 2}

        BD 4 talks to {BD 5}

        BD 5 talks to {BD 4, BD 6}

        BD 6 talks to {BD 5}

The static master side contact decomposition is shown in Figure 3-12. The filled circles 

represent assigned nodes to that domain, the open circles represent ghost nodes.

FIGURE 3-12

BD 4                                  BD 5                                 BD 6

BD 1                                  BD 2                                 BD 3

s1       s2        s3            s2      s3       s4      s5          s4          s5       s6

m1      m2       m3         m2     m3     m4    m5          m4       m5      m6

m1          m2                 m1          m2          m3          m2           m3        m4

m3         m4         m5           m4          m5         m6                   m5          m6

CD 1                                               CD 2                                            CD 3            

  CD 4                                               CD 5                                            CD 6
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Suppose that at the start of cycle n-1 the contact sides are oriented as shown in 

Figure 3-13. Each node mi both orders on and is ordered on by corresponding node si.

FIGURE 3-13

Then the contact domain configuration will be as shown in Figure 3-14:

FIGURE 3-14

As a result of the relative movement and the update of the order node information, at the 

end of cycle n-1 the contact surface has changed to:

FIGURE 3-15

s1               s2            s3              s4             s5                s6

m1            m2          m3             m4            m5              m6

m1          m2                 m1          m2          m3          m2           m3        m4

m3         m4         m5           m4          m5         m6                   m5          m6

CD 1                                               CD 2                                            CD 3            

  CD 4                                               CD 5                                            CD 6

s1              s2                        s1              s2              s3              s2                s3            s4

s3            s4                s5              s4               s5              s6                        s5                 s6

s1            s2                       s1        s2         s3                   s2         s3        s4

s3       s4          s5                 s4          s5       s6                      s5          s6

m1          m2                m1       m2        m3                 m2       m3       m4

m3        m4     m5                m4      m5         m6                      m5       m6

CD 1                                   CD 2                                       CD 3

CD 4                                    CD 5                                      CD 6
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Or from a global perspective:

FIGURE 3-16

In response to the updated orientation, the contact domains during cycle n will be as 

shown in the following figure:

FIGURE 3-17

Now we will go back and examine what happened and how it happened. We focus on one 

particular event. During cycle n-1 BD 2 doesn’t send anything to CD 1 (Figure 3-14). BD 

2 → CD 1 is not part of the communication topology. During cycle n, BD 2 sends s3 to CD 

1, so now BD 2 → CD 1 is part of the topology. In bringing about this change the follow-

ing sequence of events occurred:

        1. During cycle n-1, CD 2 found that after the order node update s2 ordered on m1.

        2. CD 2 found that m1 was a ghost node assigned to CD 1.

        3.during CD↔CD communication, CD 2 sent s2’s neighbor BD list (i.e. {BD 1, BD 

2}) to CD 1, since it determined that s2 would be assigned to CD 1 next cycle.

s2               s3            s4              s5            s6 

m1            m2          m3             m4            m5              m6

s1

m1          m2                 m1          m2          m3          m2           m3        m4

m3         m4         m5           m4          m5         m6                   m5          m6

CD 1                                               CD 2                                            CD 3            

  CD 4                                               CD 5                                            CD 6

s2              s3                        s2              s3              s4              s3                s4            s5

s4            s5                s6              s5               s6              s7                s5            s6

s1
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        4.CD 1 included s2’s neighbor BD list (which included BD 2) in its next time BDs list 

of bulk domains to expect a message from next cycle.

        5. During CD→BD communication, CD 2 returned s2’s updated state to BD 1, 

including the information that s2’s new order node was m1.

        6. BD 1 looked up m1’s static contact assignment, found it was CD 1, and so set s2’s 

rule 1 CD to CD 1. This ends cycle n-1.

        7.At the start of cycle n, during the BD↔BD phase, BD 1 sent the rule 1 CD of s2 to 

BD 2, where s2 is a proxy node.

        8. BD 2 found that its proxy node s2 had CD 1 as its assigned (rule 1) CD, found all 

s2’s local neighbors (just s3 in this case), added CD 1 to the list of CDs to send to, 

and added s3 to the list of nodes to send (as ghost) to CD 1.

In step 4, CD 1 found that it would get data from BD 2. In step 8 BD 2 found that it would 

send data to CD 1. So BD 2 → CD 1 gets added to the BD→CD topology at cycle n.

Applying the forgoing logic also causes communication paths to disappear when they are 

no longer needed. For instance, during cycle n-1 CD 3 received s2 from BD 1. In the next 

cycle CD 3 no longer needed s2, and consequently BD 1 → CD 3 dropped out of the topol-

ogy.

3.14  Summary

The method described in this chapter creates a dynamically evolving communication pat-

tern in support of contact enforcement on a parallel distributed-memory machine. This is 

accomplished by separating the communication into three communication topologies, 

each of local type.
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The BD↔BD communication ties the bulk domains together by sharing information near 

mutual boundaries. This allows a given bulk domain to "sense" when it is about to become 

involved in the work of a specific contact domain, by involvement of its proxy nodes.

the BD↔CD communication supplies the contact domain with the data needed to perform 

the contact enforcement, to update the order nodes of the CD’s assigned nodes, and to pre-

dict, on the basis of the updated order nodes, which bulk domains will communicate with 

it next cycle.

The CD↔CD communication supports the contact domain  in determining which slaves 

order on its assigned master nodes, and thus which bulk domains the contact domain will 

communicate with next cycle. CD↔CD communication also permits less redundant cal-

culation of ghost state, by trading communication for redundant calculation.

These three communication topologies work together to obviate the need for global com-

munication in determining the constantly changing interface between the two sides of a 

contact surface.

This chapter provides a summary of the method developed during this research. A much 

more detailed description of the actual implementatin is provided in Appendix A.
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4    TIMING STUDIES

In order to test the scalability of the contact algorithm as implemented in ALE3D several 

timing studies were done. The test geometries are rectangular, cylindrical, and spherical, 

and have been designed to isolate the issues related to contact scalability.

Both scaled efficiency and fixed efficiency (Section 2.2) are measured. For the scaled effi-

ciency tests the mesh refinement strategy employed in the rectangular and cylindrical tests 

is unconventional, so a few words of explanation are in order. Ordinarily when scaling a 

problem, the geometry (i.e. the overall shape defined by the boundaries) is constant, and 

the mesh is refined by putting more, smaller zones in each dimension, while keeping the 

zone geometry as "regular" (i.e. cubic) as possible. In practice this can be difficult, since 

the geometry can change radically as time evolves, while the connectivity is constant. For 

example see Figure 4-14. One does the best one can.

However, in these tests (excluding the spherical tests) the mesh refinement is only done in 

two dimensions, while the problem geometry is shrunk in the remaining dimension in 

order to keep the zones more or less cubic. This is done to provide a more stringent test of 

the scalability of the contact algorithm. Since contact surfaces are two dimensional, and 
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the overall problem is three dimensional, in conventional scaling the number of contact 

surface elements grows only as  of the overall element count N. For scaled speedup 

in which the overall amount of work per processor is held constant, contact work per pro-

cessor actually shrinks. This clouds the issue of scalability of the contact algorithm itself. 

Ideally one would hope to see super-linear scaling of the contact phase in this case, but 

how should one quantify it?

The simplest solution is to hold the contact work per processor constant, in which case it is 

clear that the ideal speedup is 1. And the simplest way to accomplish constant contact 

work per processor is to perform mesh refinement only in the dimensions of the contact 

surface.

For the fixed efficiency tests a fixed size of problem is chosen, and then is run on various 

numbers of processors. Ideally each doubling of processors will halve the run time. Inevi-

tably this ideal will fail at some point, as the amount of actual work per processor becomes 

small compared to the time spent in various fixed-overhead work, such as communication 

latency times. The problem sizes chosen exhibit this failure at the largest processor counts 

run. This is deliberate. In each case a larger problem would have fit into the minimum pro-

cessor count used (8) and would have better concealed this behavior, but to what point? It 

is better to demonstrate and discuss what is an inevitable feature of the fixed efficiency 

measure of scalability.

All tests were performed on the LLNL ASCI "Y" machine, which is an IBM SP system 

with 488 nodes and 1.5 GBytes of memory per node. Each node consists of 4 PowerPC 

604e processors, running at 332 MHertz with a peak of 664MFlops, that share the node’s 

N2 3⁄
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memory, for a total of 1952 processors. The version of ALE3d used was Version 3.1.73, 

with some modifications to the static master decomposition (the modified version is 

described in Section A.6.8.4), and some additional timing instrumentation.

4.1 An IBM SP Scalability Issue

In running the tests described in the following sections it was found that, though the prob-

lems scaled well, they did not scale as well as expected. In going from 8 to 1024 proces-

sors, a factor of 128, the run times for the scaled tests approximately doubled or tripled.

All tests were run for 200 cycles. In running with the larger processor counts it was 

observed that there was both a steady increase in typical cycle times, and an increasing 

variance in the individual cycle times. Some cycles took up to four  times as long as oth-

ers. This occurred even in the fixed test, in which identical work and communication was 

performed each cycle. Furthermore, which cycles took longer on a given run was entirely 

unrepeatable, though the general pattern appeared on each run. 

This behavior is believed to be a result of system "daemon" processes interrupting various 

processors occasionally to perform housekeeping tasks. If each processor ran entirely 

independently, assuming these system interruptions are uniformly distributed, then they 

would not affect scalability. However when the processors communicate, then if one pro-

cessor is interrupted, all processors it communicates with must wait. This effect is most 

dramatic for global operations such as MPI_Barrier and MPI_Allreduce, but also affects 

local communications. 
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To see this, consider figure Figure 4-1.

FIGURE 4-1

Each processor in this example communicates only with its nearest neighbor on either 

side. Suppose processor A is interrupted and temporarily cannot send to B and E the data 

they are waiting for. Then at some point (very soon!) B and E can go no further and cannot 

send to C and D the data they are waiting for. Thus C and D must also wait for A to return 

from the interruption. This "daisy-chain" can be of any length: all processors must wait for 

A. As the processor count is increased, the probability of a processor being interrupted by 

the system in any given time interval increases, resulting in the increased run times 

observed as well as the variance in cycle times.

To measure this phenomenon a simple test was constructed. In this test, each processor 

communicates with 6 neighbor processors. For simplicity the neighbors are the six with 

processor numbers (MPI rank) closest to the given processor. Each cycle each processor 

sends and receives 2000 floating-point numbers to its neighbors. The test is run for 1000 

timesteps. Ideally this test should take the same amount of time regardless of the total 

A                 B                  C                   D                  E
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number of processors involved. The actual results are shown (normalized) in figure 

Figure 4-2. Each number is the average of 4 runs.

FIGURE 4-2

One may wonder if there is any point in making the effort to produce an algorithm that 

uses only local communication, if the result is no better scaling that this (at least on the 

current IBM SP). To answer this question a similar test was constructed which instead per-

procs        time

    8            1.0
   16           1.03
   32           1.17
   64           1.18
  128          1.49
  256          1.78
  512          2.18
 1024         2.31
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forms a global operation (MPI_Barrier) within the loop. The results of this test are shown 

in Figure 4-3:

FIGURE 4-3

In this figure the times for local communications are reproduced, and the times for the bar-

rier loop are added. Since barriers are the simplest form of global communication, in that 

they involve no data transfer, it is clear that global communication produces a much 

bleaker picture for scalability than local communication, and thus efforts expended in 

restricting communication to local interchanges only are worth while.

IBM has proposed two solutions to this problem, both of a draconian nature [42]. First, 

one can leave one processor of each node free to handle the system work, thus allowing 

the remaining processors to continue without interrupts. For the machine these tests were 

performed on, this would require giving up 25% of the CPUs. On the latest SPs with 16 

processors per node this solution may be feasible. Second, one can set the priority of the 

user processes higher than the interrupting system processes. This solution is not available 

to the average user, and seems very dangerous in terms of system stability.

procs        time

    8            1.0
   16           1.10
   32           1.26
   64           1.66
  128          2.65
  256          3.52
  512          7.31
 1024         14.90
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4.2 Fixed Planes

For the first set of tests the simplest possible geometry is used. Two rectangular boxes of 

equal size are oriented so that one sits on top of the other with perfect overlap. The contact 

surface is defined to be the surface where the blocks meet. The mesh for the two blocks is 

slightly different. There is one more zone in the x and y directions of the bottom block 

than the top block, so that the contact nodes do not coincide, except at the edges (the con-

tact surface is orthogonal to the z direction). There is no movement in this test: the blocks 

just sit there. Nevertheless, the entire machinery of the contact algorithm, including all 

communication, is exercised.

This test is used to establish a baseline. Computational load balance should be very good, 

with any non-scalability attributable to communication. Figure 4-4 shows the geometry of 

the problem for a 1 processor run. Larger runs simply use a finer grid in x and y directions, 

while shrinking the box thickness in the z direction.

FIGURE 4-4
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The following table gives the parameters and results for a set of timed runs. Each run is 

approximately twice the size of the previous run, and is run on twice as many processors. 

All times are normalized.

As expected from the discussion in Section 4.1, there is a gradual increase in time attribut-

able to system interrupts leading to communication blocks. The overall increase in time is 

about 3x, for a 128x increase in problem size and processor count. The following figure 

compares graphically the actual scaled efficiency compared to ideal. The normalized max-

imum run time is shown, which is actually the inverse of scaled efficiency.

Procs
total 
zones

zones / 
proc

contact 
nodes

nodes / 
proc

contact 
time

8 25,282 3160 12,961 1,620 1.0
16 50,622 3164 25,763 1,610 1.11
32 101,762 3180 51,521 1,610 1.14
64 203,386 3178 102,597 1,603 1.24
128 408,322 3190 205,441 1,605 1.36
256 815,346 3185 409,481 1,600 1.51
512 1,635,842 3195 820,481 1,603 1.65
1024 3,264,994 3188 1,636,113 1,598 2.57
TABLE 1. 
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FIGURE 4-5

In addition to the scaled test, a fixed-size test was run with various processor counts. The 

problem chosen is identical to the one used for the scaled test with 256 processors. Results 

for the fixed test are compared with ideal scaling in Figure 4-6.

FIGURE 4-6



      84
4.3 Sliding Planes

In this test two rectangular boxes are again modelled, but in this case they sit at an initial 

offset, as shown in Figure 4-7(a). One block is given a velocity, so that at a later time they 

are in the configuration shown in Figure 4-7(b).  

FIGURE 4-7

This test exercises the ability of the algorithm to change its communication pattern over 

time. The partitioning algorithm decomposes the problem into domains such that each 

domain is in one block or the other, not both. This is a consequence of the rule that 

attempts to minimize connectivity between domains. The most obvious cut is between the 

blocks, along the contact surface, because there is no connectivity between blocks.

As the block slides, the domains directly across from a given domain will change, altering 

the communication pattern. Aside from this, individual slave nodes are assigned to the 

contact domain of their associated master node, and as the block slides, slaves that were 

previously ordered on masters on the edge of a contact domain will change ordering to 

new masters in a different contact domain. Thus the individual data sent to contact 

domains changes each cycle, even when the pattern of communicating domains does not. 

(a)                                                                    (b)
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Table 2 and Figure 4-8 present the normalized results for the scaled sliding planes test:

FIGURE 4-8

From the above results it is clear that this test does not scale as well as the fixed plane test. 

The source of the problem is poor load-balance. This is a consequence of the way in which 

the slave nodes are assigned to Contact Domains. As discussed in Section A.5, each slave 

node is dynamically assigned to the same Contact Domain as its statically assigned master 

order node. Since the blocks are offset, all the slave nodes in the offset region order on the 

procs
total 
zones

zones /
proc

contact 
nodes

nodes / 
proc

contact 
time

8 25,600 3,200 13,122 1,640 1.0
16 51,072 3,192 25,990 1,624 1.10
32 102,400 3,200 51,842 1,620 1.20
64 204,288 3,192 103,050 1,610 1.40
128 409,600 3,200 206,082 1,610 1.78
256 817,152 3,192 410,368 1,603 2.15
512 1,628,400 3,200 821,762 1,605 3.05
1024 3,268,608 3,192 1,637,922 1,600 5.21
TABLE 2. 
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limited set of master nodes along the edge of the master side closest to the offset slave 

region. Figure 4-9 depicts a simplified one dimensional example. The slave side is on the 

bottom. Each partition along the top represents a different Contact Domain.

FIGURE 4-9

Though the master side is well load-balanced, most of the slave side is closest to master 

nodes in Contact Domain A. Thus most of the slave nodes are assigned to Contact Domain 

A. A much lesser number are assigned to B, and none are assigned to Contact Domain C. 

This results in severe load imbalance.

The imbalance gets worse as the problem is scaled up. In Figure 4-9 50% of the slave side 

lies to the left of the master side, and thus more than 50% of the slave side will be assigned 

to 33% of the Contact Domains. Now suppose that the mesh is refined 10 times, with a 

proportional increase in processor count, so that there are now 30 Contact Domains. More 

than 50% of the slave nodes will now be assigned to 1/30, or about 3%, of the Contact 

Domains.

This is a definite weakness in the current version of the contact algorithm. It can be 

"fixed" by using a different method of assigning slave nodes to Contact Domains, and is 

an area for future development.

  A                 B                  C

A                        B

master

slave
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Figure 4-10 shows the results for the fixed size scaling test for sliding planes. Again, the 

problem used is the same as the 256 processor scaled test. The straight line represents 

ideal scaling.

FIGURE 4-10

4.4 Cylinder Test

In this test two concentric cylinders are modelled, as shown in Figure 4-11. The outer cyl-

inder is held fixed while the inner cylinder is given a constant angular velocity. In this 

problem each part of the contact surface eventually comes into contact with many other 

parts of the surface, so that there is a large amount of change in the communication pattern 

over time. It does not have the load-imbalance problem of the sliding planes in the last 
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section, so scalability should be improved. Over the course of the test one full revolution 

of the interior cylinder is modelled.

FIGURE 4-11

The results for this test are shown in Table 3 and Figure 4-12.

procs
total 
zones

zones /
proc

contact 
nodes

nodes / 
proc

contact 
time

8 12,800 1,600 6,642 830 1.0
16 25,536 1,596 13,110 819 1.01
32 51,200 1,600 26,082 815 1.13
64 102,144 1,596 51,754 809 1.21
128 204,800 1,600 103,362 808 1.40
256 408,576 1,596 205,650 803 1.56
512 819,200 1,600 411,522 804 1.85
1024 1,634,304 1,596 819,847 801 2.37
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FIGURE 4-12

As expected, this test scales quite well, within the limits imposed by the scaling issues dis-

cussed in Section 4.1.

Figure 4-13 shows the corresponding fixed size results, for the problem used in the 256 

processor scaled test:

FIGURE 4-13
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It can be seen from this that the fixed-size problem becomes communication-bound past 

512 processors. This is not surprising, as there are less than 400 contact nodes per Contact 

Domain at this point, which leaves each processor without a lot of computation to balance 

the communication overhead.

4.5 Concentric Spheres Test

This last test involves more physics than the previous tests, and can be used to test the 

accuracy of the overall simulation. In this test there are two contact surfaces, separating 

three concentric spherical shells. The outer and inner shell are a metallic material, while 

the middle shell is an explosive material. Only one octant of the material is modelled, with 

symmetry boundary conditions.

At the initial time the explosive is ignited, leading to rapid expansion of the material. 

Figure 4-14 shows the initial problem configuration. While there is not a lot of movement 

along the contact surfaces, there is some, and to capture the correct physics it is necessary 
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to allow the free motion. The most important requirement on the contact surfaces in this 

application is the need to accurately model shock waves as they cross the surface.

FIGURE 4-14

Unlike the previous tests, as this test is scaled up the ratio of contact nodes to overall zones 

decreases, as shown in the following table of problem parameters and results.

Initially the shrinkage in the amount of actual computation leads to a reduced run time in 

the above results, but as the processor count increases the amount of computation becomes 

Procs
total 
zones

zones /
proc

contact 
nodes

nodes /
proc

contact 
time

8 21,240 2,655 5,312 664 1.0
16 42,350 2,646 7,669 479 0.90
32 84,860 2,652 12,936 404 0.90
64 169,920 2,655 20,740 324 1.09
128 338,800 2,646 30,064 235 1.11
256 678,880 2,652 50,948 199 1.37
512 1,359,360 2,655 81,956 160 1.62
1024 2,710,400 2,646 119,044 116 1.93
TABLE 3. 
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less significant relative to the communication time, which suffers the mild non-scalability 

discussed in Section 4.1. A plot of the timing results is presented in Figure 4-15:

FIGURE 4-15

The following Figure 4-16 shows the results of a fixed size scaling test. As in the other 

tests, the problem size used above for 256 processors is used for all processor counts of the 

fixed size test.

FIGURE 4-16
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5    SUMMARY AND  FUTURE 
DIRECTIONS

This dissertation has detailed the design and implementation of a parallel algorithm for 

modelling the behavior of multiple bodies in contact with each other. Unlike the fairly 

straight-forward task of parallelizing the computation of a single body, the modelling of 

multiple bodies results in a communication pattern which changes dynamically and unpre-

dictably in time.

After presenting a survey of past work in modelling dynamic processes with the class of 

programs known as hydrocodes, with special emphasis on the handling of contact sur-

faces, and reviewing various efforts to parallelize this task, the dissertation launches into a 

specific implementation which is designed to accomplish this task on the current class of 

distributed memory parallel computers in a highly scalable manner. Successful implemen-

tation requires that all global communication be banished, and the tracking of the chang-

ing configuration be accomplished via local communications only. These patterns are 

themselves in flux. Success in this endeavor is demonstrated through a series of timing 

studies using various problem geometries.
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The algorithm described herein has been incorporated into the ALE3D code system, a 

multiphysics finite element hydrocode that is under constant use and development at 

Lawrence Livermore National Laboratory. There are several areas in which the applicabil-

ity and scalability of the basic algorithm might be extended in future development. One 

direction involves the use of computer memory. For the initial implementation, several 

arrays that are multiples of the length of the entire contact surface must be present in each 

processor. As the problem size is scaled up, a point must ultimately be reached where 

these arrays are too large to fit into memory. This problem was analyzed early in the 

development of the parallel contact algorithm, and it was determined that it would not be 

an issue for the current and projected problems to be studied by ALE3D over the next sev-

eral years. This is due to the two dimensional nature of contact surfaces in three dimen-

sional problems. For example, in a problem with 100 million zones, the number of contact 

faces is on the order of 500,000. Still, the history of computers has taught us that what is 

considered enormous at one point in time may become a typical size within a few years.

In order to deal with this issue it will be necessary to partition the contact surface during 

the preprocessing phase when the overall problem is partitioned, rather than performing 

the entire contact decomposition at run time. Each processor would then only have such 

bits and pieces of arrays such as the contact surface connectivity and master side decom-

position as it required.

Another useful direction for future development is touched on in Section 4.3 when it was 

seen that in some circumstances the current master static / slave dynamic decomposition 

produced poor load-balance. One application area that highlights this shortcoming is the 

impact problem, since in the initially separated positions a large fraction of the slave nodes 
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may order on a small fraction of the master nodes, leading to disproportional distribution 

of the slaves across contact domains.

A potential solution to this problem would be to develop a decomposition which statically 

assigns slaves as well as masters to contact domains. In many situations this would be 

inefficient, leading to increased communication (see the discussion in Section A.5.2). 

However, in other situations the improved load balance would more than offset this. So 

the optimal solution would be to offer this capability as yet another decomposition that the 

user can choose to fit the circumstances.

ALE3D is a living code. Several enhancements have been developed since the initial work 

documented in this dissertation was done, and more will follow. However, it is fair to say 

that this work falls into the category discussed in the appendix on ALE3D extensions, and 

does not contradict the fundamental algorithmic descriptions in the body of the disserta-

tion.
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APPENDIX A  -  ALE3D 
IMPLEMENTATION

A.1  Overview 

In its ALE3D implementation, the contact algorithm is part of a larger picture. First the 

problem geometry is defined via a mesh generator. Then the mesh is divided in a number 

of subdomains, called bulk domains, and various material properties and initial and 

boundary conditions are specified.This is all part of the pre-processing stage.

At runtime, each bulk domain is assigned to a separate processor (see, however, 

Section B.1) and a number of initialization steps are performed to read in the problem def-

inition, set up communication along bulk domain boundaries, initialize the slide decompo-

sition, etc.

Once the main loop is entered, each processor independently calculates the forces on each 

node in its bulk domain, based on the stress in each mesh zone surrounding the node. 

From these forces and the zonal masses, which are a lumped representation of the mass of 

surrounding zones, nodal accelerations are arrived at.
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Up to this point, nodes on the contact surface are treated as though they were on a free sur-

face. The computed accelerations do not take into account force exerted on contact nodes 

by the opposing side of the slide interface.

During the contact phase, nodes on the slide surface are reassigned to contact domains, 

where each contact domain is associated with its own processor (from the same set of pro-

cessors as the bulk domains). If a node is assigned to a given contact domain then it, its 

immediate neighbors on its side of the surface, the closest node on the opposing side of the 

surface, and immediate neighbors of the closest opposing node (collectively referred to as 

the locale of the node in Chapter 3) must all be sent to the given contact domain. The pur-

pose of this is to supply the contact domain with sufficient information to complete the 

acceleration calculation for the node, taking into account force exerted by the opposing 

side.

After the modified acceleration is computed for a contact node, it is used to calculate a 

new velocity and position for the node. At the end of the contact phase the velocities and 

positions of all contact nodes are returned to their bulk domains, which can be considered 

their permanent homes.

With updated nodal velocities and positions for all nodes (bulk and slide) available on the 

bulk domain, the new nodal stresses can be evaluated using the stress-strain relationship of 

the selected material model, and the next cycle can begin.
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A.2  Definitions

In this section a formal approach is taken, in order to precisely define the terms that will be 

used throughout the rest of this appendix.

A.2.1  The Continuum model 

Let  be a continuous, bounded, simply-connected closed region of R3.  will be used to 

represent the space occupied by a single material body, solid or fluid, at a given time t.

For a point , let Nr(x) be the set of all points  such that . Nr(x) is 

called the open neighborhood of x of radius r.

 The boundary   of  consists of those points  such that every open neighborhood 

of x contains points not in : 

FIGURE A-1

The interior int( ) is defined to be , the complement of  in .   

Let  be a set of regions as defined above, such that . 

Their corresponding boundaries are 

Ω Ω

x R3∈ y R3∈ x y– r<

Γ Ω x Ω∈

Ω Γ x Ω∈ Nr x( ) Ω r 0>∀,⊄{ }=

Ω

Γ

Ω Ω Γ– Γ Ω

int Ω( ) x Ω r 0 Nr x( ) Ω⊂∋>∃∈{ }=

Ωi i 0…N 1–{ }∈ int Ωi( )
i

∩ ∅=

Γ i i 1…N{ }∈{ }
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Definition A.1:  A Contact Surface Ci,j  is an ordered pair of boundaries   

along which contact may occur. At a given time t the actual contact is 

restricted to the set  . 

FIGURE A-2

A.2.2  The Finite Element Mesh

Polyhedra are 3-D objects with multiple distinct faces, edges, and nodes (also called verti-

ces or corners). Common polyhedra in modelling applications are tetrahedra 

(Figure A-3a), triangular prisms (Figure A-3b), and hexahedra (Figure A-3c). A polyhe-

dron is defined by its type and by the coordinates of its nodes. Note that while triangular 

faces are necessarily planar, quadrilateral and higher-order faces need not be planar.  

FIGURE A-3

Definition A.2:  Let  be a set of polyhedra that approximately 

cover , such that  and  . E is called the 

mesh or grid, and the ei are the mesh elements, zones, or cells.  is the 

Γ i Γ j( , )

Γ i Γ j∩

Ω1

Ω2

Γ1

Γ2

Γ1 Γ2∩

      (a)                                            (b)                                          (c)

E ei i IE∈{ }=

Ω int ei( )
i IE∈
∩ ∅= ei Ω≅

i IE∈
∪

IE
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index set for the elements: , where  is the total 

number of elements in E. 

The mesh is constructed so that each element face either a) coincides with the face of a 

neighboring element, or b) is a boundary face of the mesh. Two faces coincide if all the 

nodes defining each face coincide. There is no partial overlap of faces. 

Definition A.3:  Let  be the set of faces of element ei, and   be the 

set of all faces in the mesh.   is called the face list of the 

mesh.   is the index set , where   is the total number 

of faces in .

Definition A.4:  Let  be the set of nodes of face .

Definition A.5:  Let  be the set of nodes of element . 

Definition A.6:  Let  be the set of all nodes in the mesh.

 The preceding definitions lead up to the introduction of the connectivity and dual connec-

tivity, which specify how the various elements are connected together in the overall mesh.

Definition A.7:  The connectivity of the element set E is defined to be the set 

.

Note that the connectivity is an indexed set of sets. Consider two set members   and 

. Each is a list of nodes. By comparing the nodes in each list it can be determined if the 

IE 0…NE 1–{ }= NE

Fei
F Fei

i IE∈
∪=

F fj j IF∈{ }=

IF 0…NF 1–{ } NF

F

Vfj
fj

Vei
ei Vei

Vfj
fj Fei

∈∀,∪=

V Vei

i IE∈
∪=

Vei
i IE∈{ }

Vep

Veq
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two elements  and  are connected, and if so, whether they share a single node, an 

edge (two nodes), or a face.

Definition A.8:  Let , and define . 

For each ,  is the set of all elements that include the node .

Definition A.9:  The dual connectivity of the element set E is defined to be the set 

.

 is the index set , where  is the total number of nodes in the mesh . 

The dual connectivity is also an indexed set of sets.

The element set connectivity expresses the relationship between elements and nodes. A 

related construct defines the relationship between faces and nodes.

Definition A.10:  The connectivity of the face set F is defined to be the set 

.

Definition A.11:  The Dual connectivity of the face set F is defined to be the set 

.

In the above definitions of connectivity and dual connectivity, the element set E and face 

set F may be any arbitrary element and face sets. 

Definition A.12:  A mesh path between two nodes  and  is a sequence of ele-

ments  such that ,  and for each adjacent pair 

of elements  in the sequence, there exists a node  such that 

ep eq

vk V∈ Evk
ei vk Vei

∈{ }=

vk Evk
vk

Evk
k IV∈{ }

IV 0…NV 1–{ } NV E

Vfi
i IF∈{ }

Fvk
k IV∈{ }

vk vl

ei…ej{ } vk Vei
∈ vl Vej

∈

ep eq, vm
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. The length of the mesh path is the number of elements 

in the sequence.

In order to traverse a mesh path, the connectivity and dual connectivity are applied in 

alternating order. For example, a  is first selected. Then the dual connectivity is used to 

choose an . The connectivity is then applied to  to select a different node 

, and the process is repeated over the length of the path.

Definition A.13:  The mesh neighborhood   of a node  of radius r, is the set 

of all nodes  for which there exists a mesh path between  and  of 

length . 

In the above definition, r may be preselected and held constant throughout a discussion, in 

which case  is simplified to , with r implicit.

Let .  consists of the set of all faces 

in  that are shared by two elements.

Let .   is the set of boundary faces of the mesh, which have an element 

on only one side, the other side being a "free surface".

Definition A.14:  Let  and  be unconnected meshes, with boundary face sets 

 and . A double-sided contact surface is an ordered pair of face 

sets , where  and 

vm Vep
Veq

∩∈

vk

ej Evk
∈ ej

vn Vej
∈

vi[ ] r vi
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 is referred to as the master side, and  is referred to as the slave side, of the contact 

surface. Single-sided contact surfaces for which a single set of faces is defined, and con-

tact permitted between faces of the single set, are not considered in this document, and so 

the term "contact surface" will be used to refer to a double-sided contact surface.

FIGURE A-4

In Figure A-4,  two disconnected meshes E1 and E2 are shown. Each has 54 boundary 

faces. From these the 9 rightmost boundary faces of E1 constitute the master side M, while 

the leftmost 9 boundary faces of E2 constitute the slave side S.

A.2.3  Contact Proximity Relations

In order to enforce the contact constraints, it is necessary to know at all times the spatial 

relationship of the two sides with respect to each other. This is accomplished by determin-

ing at each timestep, for each node on each side of the surface, the closest node on the 

other side of the surface.

Let , and let . Note that 

 and , where ,  is the 

total number of master nodes, and ,  is the total number of slave 

M S
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nodes. The  nomenclature will be used in preference to the more general  to spe-

cifically refer to master or slave nodes, respectively.

Definition A.15:  The order node mapping is a mapping  such that:

        4.   is defined by   such that 

.

        5.   is defined by   such that 

.

 is called the order node of . Similarly,  is called the order 

node of . If more than one node meets the criterion to be an order node, one 

of them is arbitrarily selected.

A.2.4  Domain Decomposition

Definition A.16:  A Domain Decomposition is a partitioning of a mesh into a num-

ber of submeshes, called domains.

For the purpose of this discussion, multiple disconnected meshes will be considered as one 

generalized mesh . Also, a single contact surface will be assumed. The extension to mul-

tiple contact surfaces is straight-forward.

Three different decompositions, and three resulting sets of domains, are considered.

Definition A.17:  The Bulk Decomposition  partitions the set of elements 

 into a number  of bulk domains 

, where  and .

mi si, vi
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Typically one bulk domain, or BD, will be assigned to each processor of a parallel 

machine. However, this is not necessary, and in some situations multiple BDs may be 

assigned to each processor to achieve better computer cache behavior, in a method known 

as domain overloading.

Let . Note that  is the restriction of the face 

set  to faces in the bulk domain .

Definition A.18:  the Primary Decomposition is a restriction of the Bulk Decom-

position to contact faces and nodes. That is, each primary domain is the 

subset of the corresponding bulk domain restricted to contact nodes and 

faces.

For a given bulk domain , its corresponding primary domain is the face set 

 with corresponding node set 

.

Definition A.19:   is called a local node of  primary domain .

Definition A.20:   is called a proxy node of primary domain , if 

, for a prespecified radius r.

In words, a proxy node is a node that, while not a local node, is in the neighborhood of a 

local node.
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For the purpose of the contact algorithm, the bulk decomposition and thus the primary 

decomposition are given. Each is statically determined at the start of execution. This is not 

true of the following decomposition.

Definition A.21:  The Contact Decomposition is a partitioning of the contact 

nodes  into   contact domains.

Note that , and 

, so that the contact domain Ci is defined 

by  

Let , the index set of contact domains. Then   for 

, , and .

Definition A.22:   is called an assigned node of contact domain .

Definition A.23:   is called a ghost node  of contact domain , if 

, for a prespecified radius .

In words, a ghost node is a node that, while not an assigned node, is in the neighborhood 

of an assigned node.

A.3  Naming and Index Sets

In the preceding section a number of index sets were defined. For instance, the set  is 

the index set of nodes on the slave side of the contact surface, so that  represents a slave 

VM VS∪ NCD

VMi
mj VM mj is in the ith contact domain∈{ }=

VSi
sj VS sj is in the ith contact domain∈{ }=

Ci VMi
VSi

∪=

ICD 0…NCD 1–{ }= Ci Cj∩ ∅=

i j ICD∈, i j≠ Ci
i ICD∈
∪ VM V∪ S=

vj Ci∈ Ci

vj Ci∉ Ci

vk Ci vj vk[ ] r∈∋∈∃ r

IVS

si
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node for . Index sets figure prominantly in the following discussion, so it is impor-

tant to be clear about the definition and relation of the various index sets. This section 

expands on the role and relationships of these index sets, from a computationally-oriented 

point of view. In the following, the term "index set" will be replaced by the more com-

puter-oriented term index space, but the two terms are synonymous

A.3.1  Naming

In order to operate on data from memory, its address must be known. In most computer 

languages the user associates a name with the specific data (for instance, "temp1", 

"XPOS[125]"), and the operating software keeps track of the actual storage location. 

When there are a large number of the same type of entity, for instance the X coordinates of 

all the nodes in a domain, it is common to use "arrays" or "lists" to store the set of data. 

The name for a particular datum then consists of two parts: its array name and its index. 

The index specifies which item in the list it is. For instance, the array name may be XPOS 

for the X coordinates of domain nodes and the name for the X coordinate of the 126th 

node, XPOS[125] (starting at zero).

A given node has a variety of data associated with it: coordinates, velocity, acceleration, 

lumped mass, etc. There can be separate arrays for each of these, or all data can be col-

lected into an array of structures. In the first case, we can insist that the same index in the 

various arrays be used for the various properties of a specific node. In the second case, the 

point is moot; there is only one array, the various properties must share the same index. It 

is only a small abstraction to define the index to be the name of the node, even if, as in the 

first case, there is no location at which the node itself exists, but only a number of array 

i IVS
∈
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elements comprising its properties. It will be seen below that there need not even exist 

property arrays for the notion of a node index to be useful.

A.3.2  An Example

In order to illustrate the use of the various index spaces to be discussed below, an example 

is offered. In Figure A-5 a mesh is shown for two simple blocks with a contact surface 

between them. The upper surface of the lower block is defined to be the master side of the 

contact surface, while the lower surface of the upper block is the slave side. The bulk 

decomposition of the problem into four bulk domains is shown by the bold lines. The 

lower left bulk domain will be called P0, the lower right domain P1, the upper left domain 
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P2, and the upper right domain P3. The blocks are shown apart and at an angle so that the 

global indices, discussed below, can be shown for the entire contact surface.

FIGURE A-5

This figure will be referred to in the following discussions of the various index spaces.

A.3.3  Global Index Space

When the grid is initially generated, a unique index is assigned to each node in the prob-

lem. If there are N nodes in the overall problem, then the global index space for the nodes 

is [0...N-1]. For large problems, the memories of even the largest sequential computers 

may be overwhelmed by the arrays in this index space. When this is the case, the problem 

may be generated in pieces, or may be initially decomposed into bulk domains, so that no 

   44           50          56           62           68          74           80

5            11          17           23           29           35          41

4            10           16          22           28          34           40

3            9            15           21          27           33          39

0             6             12          18           24          30          36

43         49           55           61          67          73            79

42          48           54           60          66          72           78

 45           51          57          63           69          75           81

82

83

  37

38

P2 P3

P0                            P1
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actual arrays in the global index space are allocated. Even in this case a mapping will exist 

that assigns to each node in the piece or in the bulk domain its global index.

For convenience, the tag Gidx is associated with the global index space, as in the Gidx 

index of a node. In Figure A-5 the Gidx indices of the global index space are shown.

A.3.4  Contact Surface Index Space

Each node on a given side of the contact surface has associated with it a contact surface 

index, or Sidx index. No two nodes on the same side of the surface will have the same 

Sidx index, but unrelated nodes on opposing sides may share the same index (but in a dif-

ferent index space).

Likewise each face on the surface is assigned an index, also referred to as its Sidx index 

although node and face Sidx index spaces are independent.

In order to uniquely identify a node based on its Sidx index, there exists a global map 

from Sidx index to corresponding Gidx index for each side of the surface. Figure A-6 

shows the master and slave global maps for the example of Figure A-5.

FIGURE A-6

Sidx    0   1   2   3   4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20 
Gidx   3   4   5   9  10  11  15  16  17  21 22  23  27  28  29  33  34  35  39  40  41

      Master Sidx Global Map

Sidx    0   1   2   3   4    5    6    7    8    9  10  11  12  13  14  15  16  17  18  19  20 
Gidx  42 43 44 48 49 50 54  55  56  60  61  62  66  67  68  72  73  74  78  79  80

Slave Sidx Global Map
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Initially the user specifies which surfaces of the problem are master and slave contact sur-

faces during input to the grid generator. The grid generator, after creating the mesh and 

assigning an order to the nodes, determines which of these nodes lie on the specified sur-

faces, and outputs a list of the Global indices of just these nodes, sorted in the order of the 

global index. This is how the global map is produced.

The grid generator also builds the connectivity (Definition A.10) of each side, using the 

Sidx indices of each of the nodes on a given face to specify that face.

A.3.5  Bulk Domain Index Space

After the grid is generated by the grid generator, it must be partitioned in order to be 

solved in parallel (the partition phase can, of course, be part of the grid generator). The 

bulk decomposition creates NBD separate bulk domains, by assigning each zone, or finite 

element (Definition A.2), of the problem to exactly one domain. If a zone is assigned to a 

particular bulk domain, then its constituent nodes and faces are also included in that 

domain. But whereas zones are unique to a domain, nodes and faces along the boundary 

between domains are shared by the adjoining domains, in the sense that each of the adjoin-

ing domains has its own copy. For example, in Figure A-5 nodes with Gidx 18-23 and the 

faces they bound are in both P0 and P1.

Each class of mesh entities (node, face, zone) in a bulk domain is ordered sequentially 

within its class in the domain, and assigned an index (its Bidx, or bulk domain index) 

based on its location in the order. 
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A.3.5.1  Bulk Domain Global Node Map

Since each mesh entity in a bulk domain is also a mesh entity in the overall problem, it 

possesses a global index as well as a bulk domain index. The same node may exist in more 

than one bulk domain, with a different index in each. In order to determine when two Bidx 

indices refer to the same node (necessary, for instance, when computing total force on a 

node that lies on a bulk domain boundary) a bulk domain global map is created, similar to 

the contact surface global maps in Section A.3.4. Figure A-7 shows the bulk domain glo-

bal node map for the bulk domain P1 in the example of Figure A-5.

FIGURE A-7

The bulk domain index space is the home space for most of the calculations in the overall 

dynamic code (the contact calculations are an exception). The various properties of the  

nodes and zones, such as coordinates, densities, volumes, etc., are stored in the bulk 

domain. Forces, accelerations, time advancement of non-contact nodes are all calculated 

in the bulk domain. For the most part, each bulk domain is considered to be an indepen-

dent problem, with its connection to the overall problem treated by the domain as a sort of 

dynamic boundary condition.

A.3.5.2  Scalability of the Bulk Domain

One of the chief advantages of this domain-centric model is that the domain index space is 

much smaller than the global index space, and further, it is memory scalable (see 

Gidx   18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
Bidx   0   1   2   3   4   5   6   7   8   9  10 11 12 13 14 15 16 17 18 19 20 21 22 23

Bulk Domain Global Node Map for P1
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Section 2.2). The bulk domain index space, and thus the total memory requirements of a 

bulk domain, may be made as small as necessary simply by dividing the problem into 

more, smaller domains.

The drawback is that, since the same "names" (indices) are used over again by each 

domain, each domain must refer its local indices to a global index space to determine 

when two entities in different domains are actually the same entity.

Since most of the work is done in bulk domains, the bulk connectivity (Definition A.7, 

Definition A.9) is expressed in that index space. Each bulk domain includes only the con-

nectivity for zones and external faces (see Section A.3.5.3 below) local to that domain. 

For each zone, the connectivity lists the constituent nodes, using the bulk domain index of 

the nodes in the list. For the example of Figure A-5, in bulk domain P1 the zone formed by 

nodes with Gidx {18, 19, 21, 22, 24, 25, 27, 28} will be stored in the connectivity list as 

the list {0, 1, 4, 3, 6, 7, 10, 9}.

A.3.5.3  External Face List

An external face is a face in the bulk domain that only has a zone on one side. There are 

three reasons why a face may be external:

        1. it lies on a true problem boundary

        2. It lies on an interface between bulk domains

        3. It lies on a contact surface

Examples of each of these types occur in Figure A-5 (the nodes will be written in Gidx for 

clarity. In the external face list they are actually stored in Bidx indices):
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        1. true boundary: {36, 37, 40, 39}

        2. bulk domain interface: {18, 19, 22, 21}

        3. contact surface {27, 33, 34, 28}

The external facelist is simply a collection of the nodelists of each external face (in Bidx 

indices).

A.3.6  Primary Domain Index Space

Each bulk domain has two daughter domains, a master and a slave primary domain, 

which consist of the restriction of the bulk domain to the corresponding contact surface 

side. One or both of these derivative domains may, and often will, be null. For example, in 

Figure A-5 bulk domain P1 has an associated master primary domain that consists of the 

(Gidx) nodes {21, 22, 23, 27, 28, 29, 33, 34, 35, 39, 40, 41}, and an associated slave pri-

mary domain that consists of  ∅ . The index of a node in the list of nodes in a primary 

domain, when that list is sorted by increasing Gidx, is the primary domain index, or Pidx 

index, of the node. For instance, in the above example the node in P1 with a Gidx  of 23 is 

assigned a Pidx of 2.

The primary domain index space for a given bulk domain and contact side is extended by 

adding to the end of the list of local primary domain nodes the set of proxy nodes 

(Definition A.20); i.e., neighbors of the local nodes that are not themselves local. The list 

of proxies is again sorted by increasing Gidx, but is kept separate from the local nodes, 

and follows them in the index space. Referring once more to Figure A-5, the nodes in the 

master primary domain of bulk domain P1, augmented with proxy nodes and given in 

Gidx for convenience (assuming neighborhood radius 2), are: {21, 22, 23, 27, 28, 29, 33, 
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34, 35, 39, 40, 41, 9, 10, 11, 15, 16, 17}, which are assigned the corresponding Pidx indi-

ces 0 - 17.

No global domain map is required by the algorithm for primary domains. Instead there are 

two other maps defined: from primary domain index to bulk domain index and from pri-

mary domain index to contact surface index, labeled respectively the Pidx→Bidx map, 

and the Pidx→Sidx map. For the purposes of these maps, the proxy nodes are not 

included. Figure A-8 lists these maps for the case of the master primary domain of bulk 

domain P1 from Figure A-5. For reference the corresponding Global index is given as 

well.

FIGURE A-8

A.3.7  Contact Domain Index Space

The contact domains are in general unrelated to the primary or bulk domains. They exist to 

bring opposing patches of the contact surface together on the same processors in order to 

calculate their mutual  effects on each other. In Figure A-5 a sample bulk domain decom-

position into P0 - P3 is shown by the bold lines. Note that each bulk domain is only 

Gidx    21   22   23   27   28   29   33   34   35   39   40   41
Bidx    3     4      5     9   10   11    15   16   17   21   22   23  
Pidx    0     1      2     3    4     5      6     7     8     9    10   11

Pidx->Bidx Map

Gidx    21   22   23   27   28   29   33   34   35   39   40   41
Sidx    9    10   11   12   13   14   15   16   17   18   19    20  
Pidx    0     1     2     3     4     5     6     7     8     9    10    11

Pidx->Sidx Map
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involved in one side of the contact surface. For example, P1 cannot calculate the force 

exerted by the slave side, unless domains containing the slave side send that information. 

Although that is one approach, a more general approach is taken by this algorithm, and all 

data is assumed to be redistributed across the machine for the contact decomposition.

Nodes in a contact domain belong to one of two categories; they are either assigned 

(Definition A.22) or ghost (Definition A.23). After all the nodes from various primary 

domains have been received, the contact domain orders each side by first sorting all the 

assigned nodes by increasing Sidx, then following that by a sorted list of all the ghost 

nodes. A node’s index in this combined list of assigned and ghost nodes is its contact 

domain index, or Cidx index. 

To give a concrete illustration, suppose that for the problem of Figure A-5, the sets {33, 

39, 40, 41} (master, Gidx index) and {72, 78, 79, 80} (slave, Gidx index) are assigned to 

contact domain C3. Assuming a neighborhood radius of 2 (Definition A.13), C3 will also 

receive the ghost master nodes {21, 22, 23, 27, 28, 29, 34, 35} (Gidx index), and ghost 
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slave nodes {60, 61, 62, 66, 67, 68, 73, 74} (Gidx index). Figure A-9 shows the resulting 

index mappings, including the Gidx values for reference.

FIGURE A-9

In addition to the Cidx->Sidx maps, the contact domain also uses an inverse map, from 

Sidx to Cidx. This is shown in Figure A-10 for the preceding example, for the master side.

FIGURE A-10

Unlike all the preceding index spaces, the contact domain index space changes each cycle, 

and is reconstructed by the contact domain after it receives its input from all contributing 

primary domains. Like the bulk domain index space, the contact domain indices are 

"working" indices, used directly to access nodal data such as coordinates, etc., for calcula-

tions. This implies that the contact domain has its own copy of this data.

Gidx    33   39    40    41    21    22    23    27    28    29    34    35
Sidx   15    18    19    20     9     10    11     12    13    14    16    17
Cidx    0      1      2      3      4      5      6       7      8      9     10     11

     Cidx->Sidx Master Map

Gidx    72    78    79    80   60    61    62     66    67    68    73    74 
Sidx   15    18    19    20     9     10    11     12    13    14    16    17
Cidx    0      1      2      3      4      5      6       7      8      9     10     11

Cidx->Sidx Slave Map

Sidx   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
Cidx   -    -   -    -    -   -    -    -   -    4   5    6    7    8    9    0   10  11   1    2    3

Sidx->Cidx Map
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A.3.8  Relative Order of Index Spaces

The global index for each node is assigned contiguously during mesh generation. Typi-

cally, indices are assigned to the three-dimensional body(s) by sweeping through the 

nodes in one dimension first and incrementing the global index for each successive node 

in a row. Then successive rows in the second dimension are assigned indices in the same 

fashion, and finally successive planes of rows. Accommodations must be made for more 

complex geometries such as general unstructured meshes, but this gives an example of the 

simplest case. In any case, simple or complex, the order in which the nodes are assigned 

global indices can be considered arbitrary, since from that point on the mesh is treated as 

unstructured, and does not assume any implicit order.

The mesh generator is also responsible for identifying the contact surface, guided by user 

input, and for assigning the master and slave contact surface indices (Sidx indices). It does 

this by creating a list of the global indices of all the nodes on a given side of a surface, and 

then sorting this list by increasing Gidx index. The offset of a given contact node in this 

sorted list is, by definition, the contact surface index of the node. Thus the contact surface 

index space is in the same order as the global index space: the Sidx->Gidx map will 

always be a monotonically increasing function.

This fact is relied on and used repeatedly in the code. For instance, when it is known that 

two lists consist of monotonically increasing indices, it is much cheaper to find their inter-

section. It also makes it possible to perform binary searches on long lists.

Likewise, the bulk domain index space is ordered in the same order as the global index 

space, so that the Bidx->Gidx map is monotonically increasing. This makes it simpler for 



      119
adjacent bulk domains to determine their common nodes (again, due to cheaper intersec-

tion).

The primary domain index space is a little more complicated, since it consists of a set of 

local nodes, ordered by global index, followed by a set of proxy nodes, again ordered by 

global index. Since any or all of the proxy nodes may have a lower global index than some 

local nodes, the Pidx index space as a whole is no longer ordered by global index. In cases 

where this is a problem the two halves of the Pidx index space are treated separately, since 

each half is well-ordered.

Similarly, the contact domain index space consists of two parts, the assigned nodes and 

the ghost nodes. The assigned nodes are ordered by global index, followed by the ghost 

nodes, which can again lead to an order inversion across the two halves. See Figure A-9 

for an example of this. The solution is the same: the two halves are each well-ordered and 

can be processed in sequence when necessary. 

A.4  Primary Decomposition

The primary decomposition is a distribution of contact nodes and faces into some number 

of separate domains. It is completely dictated by the bulk decomposition, since each pri-

mary domain is simply a restriction of a parent bulk domain to nodes and faces on the 

master or slave side of the contact surface. From the perspective of the bulk decomposi-

tion, contact surfaces exist only as problem boundaries. In general there is no consider-

ation given to optimizing the distribution of contact nodes and faces in partitioning the 

mesh.
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Although a primary domain is a subset of a bulk domain, it possesses properties and 

undergoes operations that do not occur in the overall bulk domain, and so it is maintained 

as a separate, though associated, entity.

A.4.1  Structure of the Primary Domain

Much of the information related to nodes and faces of a primary domain is already stored 

in the parent bulk domain. For instance, since contact nodes are also bulk nodes, their cur-

rent coordinates, velocities, etc., are kept in the bulk domain. Since a primary domain and 

its parent bulk domain always reside in the same processor (and the same local address 

space), it would be redundant to keep two copies of this data. Instead, the primary domain  

only needs to know the Bidx (Section A.3.5) of a given node to look up these properties. It 

is the purpose of the Pidx->Bidx map (Section A.3.6) to provide the Bidx of a given pri-

mary domain node.

On the other hand, there are a number of properties which are specific to contact nodes. It 

would be wasteful to keep this data in the bulk domain index space, since it would only 

have meaning for a small subset of indices. Instead these properties are saved in the pri-

mary domain index space, in nodeStuff blocks.

An array of these blocks is allocated for each primary domain. Each contact node, whether 

local (Definition A.19) to the primary domain or proxy (Definition A.20) to it, has its own 

nodeStuff block. The arrays of nodeStuff blocks are in the primary domain index space, so 

the nodeStuff block for a given node is at the nodes’s Pidx index in the nodeStuff array.
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There is no corresponding requirement for "faceStuff" blocks, since very little data is 

associated with the face, and what data there is (e.g. stresses in the underlying zones) 

exists already in the bulk domain, without need for replication in the primary domain.

Figure A-11 shows a typical nodeStuff array and an expansion of an arbitrary nodeStuff 

block. The following subsections provide more detailed information about the members of 

a nodeStuff block.

FIGURE A-11

A.4.1.1  Order Node

As defined in Section A.2.3, The order node is the closest node on the other side of the 

surface to the specified node. The Sidx index of the order node is recorded in the 

nodeStuff block.

A.4.1.2  Order Face

The order face is the face on the other side of the surface in contact with, or directly across 

from, the specified node.

Pidx
1) Order Node
2) Order Face
3) Rule 1 CD
4) Rule 2 CD List
5) Neighbor Nodes
6) Neighbor Faces
7) Neighbor PDs
8) Ghost CD List

nodeStuff[0]
nodeStuff[1]

  .
  .
  .

nodeStuff[n-1]
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A.4.1.3  Rule 1 CD

The Rule 1 CD of a node is simply the contact domain, or CD, to which the specified node 

is assigned. Each node is assigned to exactly one CD. For master nodes, this assignment is 

static. For slave nodes, the Rule 1 CD changes dynamically as the surface changes, and is 

defined to be the Rule 1 CD of the slave node’s current order node (a master node). If a 

node has a specified Rule 1 CD, then it and all its node neighbors must be sent to that CD 

for the contact calculations. Chapter 3 discusses this requirement as well as the motivation 

for several of the following nodeStuff elements, in a general setting.

A.4.1.4  Rule 2 CD List

For a given node, the Rule 2 CD List is a list of the CDs that have one or more assigned 

nodes whose order node is the given node. Again, Chapter 3 motivates this requirement. If 

a particular CD is in the Rule 2 CD List of a given node, then that node and all its node 

neighbors must be sent to that CD for the contact calculations. How Rule 1 and Rule 2 

information is applied will be discussed in Section A.9.1; for now it is just being pointed 

out that the nodeStuff block is where these items are kept.

A.4.1.5  Neighbor Nodes

For a given local or proxy node, this is a list of all the local nodes within the given node’s 

neighborhood. In Definition A.13 the notation [ni] was introduced to represent the node 

neighborhood of ni, without respect to any domain decomposition. The radius is implicit. 

This notation may be extended to [ni]P, to represent the intersection of  [ni] with the set of 

nodes local to Primary Domain P: [ni]P = [ni] ∩ NP. For a given local or proxy node ni, the 
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set [ni]P is kept in the node’s nodeStuff block. Figure A-12 shows two examples of the 

neighbor node list; for a local node and for a proxy node. The Primary Domain P is 

defined by the bold outline.

FIGURE A-12

In the above example, for clarity the "primed" node neighborhoods have been listed by the 

Sidx indices of the nodes. In the nodeStuff block, the node neighborhoods are kept as lists 

 0         1         2         3        4         5         6

7         8         9        10       11       12       13

14       15       16      17       18       19       20

 21       22        23      24       25       26       27

[n10]’P = {1, 2, 3, 4, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24, 25}

[n12]’P  = {3, 4, 10, 11, 17, 18, 24, 25}



      124
of corresponding Primary Domain indices. In Figure A-13 the conversion for the two 

listed neighborhoods is made from Sidx index space to Pidx index space.

FIGURE A-13

A.4.1.6  Neighbor Faces

Similarly to neighbor nodes in the previous section, neighbor faces is a list of the faces in 

the neighborhood [ni] of node ni, that are also in the primary domain: i.e. in [ni]P. The 

faces are listed in the primary domain index space for faces of the given contact side.

A.4.1.7  Neighbor PD List

Each local node in a primary domain keeps a list of other primary domains that are within 

the neighborhood radius of the given node. In other words, if a given node ni, local to pri-

mary domain P, is also a proxy node to primary domain Q, then Q is in the neighbor PD 

list in ni’s nodeStuff block. This information is sent to the contact domain and used to 

determine which PD’s the contact domain will expect data from next cycle. This will be 

covered in greater detail in Section A.12.3.

Pidx    0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19
Sidx    0   1   2   3   4   7   8   9  10 11 14  15  16  17  18  21  22  23  24  25 

[n8]P = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19}

Local Node Pidx->Sidx Map

Sidx    5    6   12  13  19  20  26  27
Pidx   20  21  22  23  24  25  26  27

Proxy Node Pidx->Sidx Map

  [n22]P = {3, 4, 8, 9, 13, 14, 18, 19}
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A.4.1.8  Ghost CD List

Each local node in a primary domain keeps a list of all the contact domains that the node is 

sent to as a ghost in the current cycle. This information is sent to the contact domain where 

the node is assigned, so that the contact domain can determine which other CD’s it must 

communicate with to update ghost intermediate values during the contact calculations. 

This will be covered in greater detail in Section A.12.2.

A.4.2  Load Balance and Scalability

In general a contact surface will not be distributed evenly across the bulk decomposition, 

since it is a two-dimensional object embedded in a three-dimensional mesh. For instance, 

in Figure A-14 (a) there are eight bulk domains. Each bulk domain has about the same 

fraction of the contact surface (the surface lying between the lower and upper blocks). In 

Figure A-14 (b) the mesh has been refined by doubling the number of zones and the num-

ber of bulk domains in each dimension (the figure shows only bulk domains, not individ-

ual zones). Because both zones and bulk domains are doubled in each dimension, the 

number of zones per bulk domain, and thus the amount of work per bulk domain, remains 

constant.

The result is that the overall mesh size has been increased eight-fold. However, the num-

ber of contact faces has only increased four-fold. Also, the surface in Figure A-14 (b) is 

only distributed across half of the bulk domains. If each bulk domain is assigned to a pro-
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cessor (the typical case) then load balance for the surface is very poor; half the processors 

will sit idle during operations in the primary domain.

FIGURE A-14

As another example, if a problem is partitioned into 1000 bulk domains, one can expect 

O(100) non-null primary domains. Of course, in specific problems with actual contact sur-

faces,  mileage will vary. But as a rule of thumb, for N processors or bulk domains and a 

single contact surface, only about N2/3 will have non-null primary domains.

This is not as bad as it first appears. Consider what happens in going from Figure A-14 (a) 

to Figure A-14 (b). Assuming each bulk domain is mapped to a processor, so that eight 

processors are assigned in (a) while 64 are assigned in (b), then the same amount of work 

per processor is done in (a) as in (b). But furthermore, the same amount of work is done in 

each primary domain in (a) as in (b), for those primary domains that still have work. So 

even though load balance gets worse, this is compensated by the slower growth in size of 

the contact surface than the overall problem. Just as for the bulk domains, the work per 

primary domain executes (theoretically) in constant time as problem and machine are 

scaled proportionately, even though more and more processors are idled.

 (a)                                                   (b)
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A.5  Contact Decomposition

The contact decomposition is a partitioning of the overall contact surface, such that each 

contact node is assigned to exactly one of M contact domains. A contact domain will 

include more than just its assigned nodes, but these additional requirements are derived 

from the assigned nodes.

In general the contact nodes could be assigned to contact domains in any arbitrary fashion. 

A node could for instance be assigned to the contact domain with the same order rank (ID) 

as the lowest ranked primary domain to which it is local. Alternatively all the master 

nodes could be assigned to different contact domains than all the slave nodes. In either of 

these cases the contact decomposition would be static with respect to the assigned nodes. 

(The "additional requirements" referred to above would still change dynamically).

However, the overall goal of the contact decomposition is to bring together opposing 

nodes and faces on the two sides of the surface into relatively autonomous contact 

domains, where the force balance and impenetrability calculations of contact enforcement 

can be performed for the assigned nodes of the domain. In doing so, two subsidiary goals 

are:

        a) to create a load-balanced distribution of the contact work, and

        b) to minimize communication between primary and contact domains

The above-mentioned schemes would do a poor job of satisfying these goals.

A.5.1  Locale of an Assigned Node

When a node is assigned to a contact domain, it is for the purpose of updating its state: that 

is, determining a modified acceleration that accounts for pressure from the other side, and 
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from this a corrected velocity and position for the node. To accomplish this it needs not 

only its own initial state but information about its local environment, or locale. For the 

contact enforcement scheme used in this model, the locale consists of:

        1. nodes and faces in the assigned node’s neighborhood,

        2. the ordernode of the assigned node,

        3. nodes and faces in the ordernode’s neighborhood.

As an example, suppose that master node 6 in Figure A-15 has been assigned to contact 

domain CD1, and that its ordernode this cycle is slave node 12. Further, let the neighbor-

hood radius be one.

FIGURE A-15

Then in addition to master node 6 (m6) the following nodes (and associated faces) must 

also be present in contact domain 1:

        [m6] = {m0, m1, m2, m5, m6, m7, m10, m11, m12}

        [s12] = {s6, s7, s8, s11, s12, s13, s16, s17, s18}

0            1            2             3           4

5             6            7            8             9

10           11           12          13          14

15          16           17          18           19

20          21           22          23           24

5            6            7             8            9

10          11          12           13          14

15          16           17          18           19

20          21           22          23          24

   Slave side

Master Side

0            1            2             3            4
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Any or all of these additional nodes may or may not be assigned to CD1, but in any case 

their full state must be available on CD1. Those nodes in the above list not assigned to 

CD1 are referred to as ghost nodes: their state will be used, but not modified (by CD1).

A.5.2  A "Good" Contact Decomposition

In the above example, a single assigned node generated the requirement for an additional 

17 nodes (it would be much worse for a more practical neighborhood radius of two). Since 

they must be there regardless, it would be most efficient if as many as possible are 

assigned to CD1. This has two implications.

First, a good decomposition will choose dense compact subsets of the surface to assign to 

a single contact domain, in terms of the metric imposed by the connectivity, in order to 

maximize the number of neighbors of an included node that are themselves included. This 

is in essence a boundary-to-surface ratio issue, where minimization of the ratio leads to the 

minimal ghost requirements.

Second, a good decomposition will attempt to assign node-ordernode pairs to the same 

contact domain. Again, this is because if the ordernode must be present, it is most efficient 

that this be the CD where it is assigned.
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These two considerations are not independent: as illustrated in Figure A-16, a tight group 

of nodes on one contact side maps (via the order relations) to a tight group of ordernodes 

on the other side.

FIGURE A-16

A.5.3  Master Static / Slave Dynamic Contact Decomposition

The approach taken in this model is to statically assign the master nodes of the contact sur-

face to the various contact domains, choosing the sets to minimize the boundary / area 

ratio. The static aspect of the contact decomposition is considered in greater detail in 

Section A.6.8.

Once the master side assignments have been determined statically, the slave assignments 

are determined dynamically each cycle, by using the current ordernode relations for each 

slave node to determine what its current master ordernode is, and then assigning the slave 

to the same contact domain as its master node.

assigned
nodes

ordernodes of
assigned
nodes
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A.6  Initialization

A.6.1  Determining Local Nodes and Faces

As a result of the mesh generation and partitioning preprocessing steps, the algorithm is 

provided at startup with the following:

        1.) the zonelist of all elements in each bulk domain.

        2.) the facelist of all faces on the contact surface.

        3.) the Bidx->Gidx and Sidx->Gidx maps.

The zonelist has one entry for each zone, or element, in the bulk domain. This entry, in 

turn, consists of an ordered list of the eight nodes at the corners of the hexahedral zone. 

The nodes are specified by their Bidx index. Figure A-17 shows a typical zone and its 

zonelist entry. It also shows how the faces of the zone can be extracted from the zonelist 

by six specific choices of four nodes at a time.

FIGURE A-17

Item 2, the facelist of contact surface faces, has one entry for each face on the surface. 

Each entry is in turn a list of the four nodes, represented by their Sidx indices, of the face. 

Unlike the zonelist, this list is not specific to a particular bulk domain; it includes the 

entire surface.

a                       b

c                      d

e                       f

g                      h

Zonelist entry: {a, b, d, c, e, f, h, g}

Faces

{a, b, d, c}
{e, f, h, g}
{a, c, g, e}
{b, d, h, f}
{a, b, f, e}
{c, d, h, g}
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The maps of item 3 were discussed in Section A.3.5.1 and Section A.3.4, respectively.

The first step in determining the local nodes of a primary domain is to create a list of all 

faces in the bulk domain from the zonelist. This is done by looping through the zones of 

the zonelist and extracting the six faces of the zone. For each face, a list of the zones hav-

ing that face is kept. A given face will have either one or two including zones. From the 

full facelist, the subset of faces that have only one including zone is extracted. This is the 

external facelist (Section A.3.5.3), and is a much smaller set than the full facelist, which 

can now be discarded.

Next, the Bidx->Gidx map is applied to the nodes of a copy of the external facelist, and 

the Sidx->Gidx map is applied to the nodes of a copy of the contact surface facelist, so 

that the two facelist copies are now both in Gidx index space. The two lists can now be 

searched for faces in common: i.e. for contact faces local to the primary domain.

In this search each positive and negative rotation of the indices of a face must be consid-

ered. For example, a face with Gidx indices {a, b, c, d} is the same face as {b, c, d, a}, {c, 

d, a, b}, {d, a, b, c}, {d, c, b, a}, {c, b, a, d}, {b, a, d, c}, and {a, d, c, b}. The fastest way 

to handle this is to sort each face by increasing Gidx index, and then just compare sorted 

faces. This seems to allow non-matches, such as {a, b, c, d} and {a, c, b, d}, but in practice 

at most one of these is a valid face and will occur in the facelists.

When a match is found, that face can be added to the list of local contact faces. This is 

done by saving the indices in both facelists where the match occurred. These indices can 

also be used to refer back to the original, unglobalized facelists, from which the Bidx and 

Sidx indices of the nodes on that face can be extracted and added to two lists of local con-
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tact nodes, one in Bidx index space and the other in Sidx index space. When the lists are 

sorted, a given offset (index) in either list refers to the same node. This is true because 

both Bidx and Sidx index space are created in the same order as Gidx index space. That is, 

both the Bidx->Gidx and Sidx->Gidx maps are monotonically increasing functions. The 

offset into either of the sorted lists is the Pidx index of the node.

To illustrate this phase of the initialization, consider the following example. In 

Figure A-18 part of a problem is shown. The block is divided into two bulk domains (P0 

on the left, P1 on the right), and the upper surface is designated the master side of a contact 

surface. The block is drawn four times so that significant nodes can be shown with their 

Gidx, Bidx, Sidx, and Pidx indices.

FIGURE A-18

0         2        4         6         8                                                           0         2         4

1         3         5        7         9                                                            1        3         5
11        13       15       17       19                                                         7        9         11 

21       23       25       27      29                                                          13       15      17

 18                                                                              10

28                                                                               16

0         1         2        3         4                                                            0         1        2
5         6          7        8         9                                                            3        4         5

10       11       12       13      14                                                          6         7         8

Gidx Indices                                                  Bidx Indices

Sidx Indices                                               Pidx Indices
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In Figure A-19 the external facelist for P1 and the master side contact facelist are shown, 

in Bidx and Sidx indices respectively.

FIGURE A-19

In Figure A-20 these facelists have been globalized, and the set of nodes for each face 

sorted.

FIGURE A-20

From the globalized facelists the following matches are found (first index is the external 

facelist index, second index is the master contact facelist index).

0     1     2     3      4      5      6      7      8      9      10     11     12     13     14     15

Node 0      0     2    12    14     0     6     4     10      0      2        6      8       1       3       7       9
Node 1      2     4    14    16     6    12   10    16      2      4        8     10      3       5       9      11
Node 2      3     5    15    17     7    13   11    17      8     10     14     16      9      11     15     17
Node 3      1     3    13    15     1      7    5     11      6      8      12     14      7       9      13     15

Face idx

External FaceList for P1

Face idx    0     1     2     3     4     5     6     7

Node 0     0     1     2     3     5     6     7     8
Node 1     1     2     3     4     6     7     8     9
Node 2     6     7     8     9    11   12   13   14
Node 3     5     6     7     8    10   11   12   13

Master Contact Facelist

0     1     2     3      4      5      6      7      8      9      10     11     12     13     14     15

Node 0      4     6    24    26     4    14    8     18      4      6       14    16      5       7      15     17
Node 1      5     7    25    27     5    15    9     19      6      8       16    18      7       9      17     19
Node 2      6     8    26    28    14   24   18    28     14    16      24    26     15     17     25     27
Node 3      7     9    27    29    15   25   19    29     16    18      26    28     17     19     27     29

Face idx

External FaceList for P1

Face idx    0     1     2     3     4     5     6     7

Node 0     1     3     5     7    11    13   15   17
Node 1     3     5      7     9    13   15   17   19 
Node 2    11   13   15    17   21   23   25   27
Node 3    13   15   17    19   23   25   27   29

Master Contact Facelist
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            (12, 2), (13, 3), (14, 6), (15, 7)

These are the contact faces that are local to the primary domain. They are kept as two par-

allel lists: {12, 13, 14, 15} and {2, 3, 6, 7}. The index into either of these lists of a particu-

lar face is that face’s Pidx index (separate namespace from the node Pidx index space).

Next, the nodes belonging to the faces in the two lists (which are the local nodes of the pri-

mary domain) are extracted into two separate node lists and sorted. In the first case the 

nodes are represented in Bidx indices,  in the second case in Sidx indices. The resultant 

lists provide the Pidx->Bidx map and Pidx->Sidx map (Section A.3.6), as shown in 

Figure A-21 for the above example.

FIGURE A-21

A.6.2  NodeStuff I: Local Neighbor Nodelists, Facelists

For each primary domain P and each side of the surface an array of nodeStuff blocks, as 

defined in Section A.4.1, is allocated. The ith nodeStuff block will hold data for the node 

with Pidx i. For each local node ni in the primary domain, a list of its neighbor nodes [ni]  

is computed and stored in the node’s nodeStuff structure, and similarly for the local neigh-

bor faces. These lists are discussed more fully in Section A.4.1.5 and Section A.4.1.6. At 

this point the neighbor node list is not yet constrained to nodes local to the primary 

Bidx    1     3     5     7     9    11    13    15    17
Pidx    0     1     2     3     4      5      6      7     8

Pidx->Bidx Map

Sidx    2     3     4     7     8     9    12    13    14
Pidx    0     1     2     3     4     5     6      7      8

Pidx->Sidx Map
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domain, since the full neighbor lists are needed to determine proxy nodes, described in the 

next section.

A.6.3  Determining Proxy Nodes

As defined in Definition A.20, a proxy node of a primary domain P is a contact node that 

is in the neighborhood [ni] of a local node ni, but is not itself a local node. Proxy nodes 

would typically be called ghost nodes in the literature, but to avoid confusion between pri-

mary domains and contact domains the term ghost node is reserved for contact domains, 

while proxy nodes are associated exclusively with primary domains.

After a primary domain has determined its set of local nodes N as discussed in the previ-

ous section, it then uses its nodeStuff neighbor node lists (Section A.6.2) to find the node 

neighborhood [ni] (Definition A.13) of each node ni ∈ N. Then it collects all nodes in all 

such [ni] into a single list (in Sidx index space) and removes from the list all the local 

nodes. What remains is the set of proxy nodes. This set is then sorted by increasing Sidx 

and assigned Pidx indices, where the Pidx index of the first proxy node is one greater than 

the highest local node Pidx index, and so forth. At the same time, in order to retain a 

pointer to the proxy node’s true identity, the proxy node’s Sidx is added to the Pidx->Sidx 

map at its Pidx index.
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As an example, consider the problem introduced in the previous section. In this case the 

proxy nodes have been added to the Pidx index space, and the resulting Pidx->Sidx map is 

shown. This assumes a neighborhood radius of two.

FIGURE A-22

A.6.4  NodeStuff II: Proxy Node Neighbor Nodelists, Facelists

Once the proxy nodes for a primary domain have been calculated, the Pidx namespace and 

corresponding nodeStuff array is extended to include the proxy nodes, and for each proxy 

node, its local neighbor nodes and faces are stored in the proxy node’s nodeStuff. Also, 

the neighbor lists [ni] of local nodes ni are trimmed of any non-local (i.e. proxy) nodes. 

That is, [ni] is further reduced to [ni]P in the neighbor nodelists of both local and proxy 

nodes.

A.6.5  Initializing Proxy Communication

A proxy node in one primary domain is a local node in one or more other primary 

domains, where its full state is kept current. The point of having proxy nodes is to have a 

convenient place to store a copy of a small subset of the state of those nodes that are close 

0         1         2        3         4                                                            0         1        2
5         6          7        8         9                                    11        12        3        4         5

10       11       12       13      14                                     13      14       6         7         8

Sidx Indices                                               Pidx Indices

9       10

Sidx    2     3     4     7     8    9    12   13   14    0     1      5      6     10    11
Pidx     0    1      2     3     4    5     6     7     8     9    10    11     12   13    14

Pidx->Sidx Map
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enough to local nodes to influence them (in particular to influence which contact domains 

particular local nodes must be sent to).

In order to update the information stored by the proxies (a subset of the nodeStuff block 

discussed in Section A.4.1) the primary domain must determine who has the information 

(i.e. in which primary domain(s) the proxy is local). Conversely, any primary domain 

where the node is local must determine to which primary domain(s) the node is proxy.

Since primary domains are themselves static, the information about where a given node is 

local and where it is proxy is unchanging, and thus the communication channels can be 

determined during initialization.

To do this, once a primary domain P has determined its proxy nodes (Section A.6.3), it 

sends a list of them  (in Sidx indices) to all other primary domains. Since the Sidx index is 

independent of primary domain, it can be used to compare nodes in different primary 

domains for identity.

Each other primary domain, when it receives the proxy list from P, compares it to its list of 

local nodes, converted to Sidx indices using its Pidx->Sidx map (Section A.3.6), and looks 

for matches. It builds a list of the set of such matches and sends the list back to P in Sidx 

indices, as well as retaining a version of the list converted to local Pidx indices. These lists 

of nodes to be sent from one domain to another will be referred to as invoices. They 

appear not only in PD↔PD communication, but also in PD↔CD and CD↔CD commu-

nication, to be discussed in later sections.
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When P receives the invoice from another primary domain it converts it from Sidx to its 

own Pidx indices. In this case the Pidx indices will be indices of proxy nodes, beyond the 

end of the local nodes in the Pidx index space.

At this point the PD↔PD communication pattern is established. Each primary domain 

has, in its own Pidx index space, an invoice list of what local nodes to send to surrounding 

primary domains, and what proxy nodes to receive from surrounding primary domains. 

Wherever the invoice is null, no further communication with that PD is required. This has 

a very important consequence for scalability of the overall algorithm: all subsequent 

PD↔PD communication is limited to nearest neighbors. As discussed in Section 2.2, this 

is necessary for scalability.

To help focus the preceding discussion, the following example is provided. In Figure A-23 

one side of a slide surface is shown partitioned into nine primary domains.

FIGURE A-23

Focusing on primary domain P2, in Sidx P2 has local nodes {4, 5, 6, 11, 12, 13, 18, 19, 20} 

and proxy nodes {3, 10, 17, 24, 25, 26, 27} (assuming a neighborhood radius of one). P2 

sends its proxy list to all other primary domains, and gets back the following invoices:

 0     1      2      3     4      5      6

7      8      9      10    11    12    13

14    15    16    17    18    19    20    

21    22    23    24    25    26    27

28    29    30    31    32    33    34

35    36    37    38    39    40    41

42    43    44    45    46    47    48

    P0

P1

P2

P3 P5

P6 P8

P7



      140
        P0 : ∅

        P1 : {3, 10, 17}

        P3 : ∅

        P4 : {17, 24, 25}

        P5 : {25, 26, 27}

        P6 - P8 : ∅

There will be no further communication by P2 with P0, P3, or P6 - P8. P2 will convert the 

invoices from P1, P4, and P5 into its own Pidx space:

        P1 : {9, 10, 11}

        P4 : {11, 12, 13}

        P5 : {13, 14, 15}

Meanwhile, P2 also remembers what invoices it has sent out to other primary domains, in 

order to fill their proxy requirements:

        P1 : {5, 12, 19}

        P4 : {11, 12, 19}

        P5 : {11, 12, 13}

        P0, P3, P6 - P8 : ∅

which it converts to its local Pidx space:

        P1 : {1, 4, 7}

        P4 : {3, 4, 7}

        P5 : {3, 4, 5}

Thus primary domain P2 knows what to expect from each other PD and where to store it 

when it arrives, and what to send to each other PD and where in its local index space to get 
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it from. The invoices are constant for the rest of the run, and constitute all PD↔PD com-

munication.

A.6.6  NodeStuff III: Neighbor PD lists

For reasons that are explained in Section A.12.3, it is necessary to build a list for each 

node of any other primary domains in that node’s neighborhood, or in other words, a list 

of other PDs on which the local node is proxy. It does this by first initializing for each 

node an empty neighbor PD list. Then the PD<->PD invoices  (Section A.6.5) for each 

neighbor PD are scanned. For each local node found in a particular PD invoice, that PD is 

added to the neighbor PD list for that node. Once calculated, the list is stored in the node’s 

nodeStuff structure.

A.6.7  Global Ordering

A critical assumption of the overall contact algorithm is that a node on one side of the sur-

face only moves a small distance with respect to the other side of the surface in a single 

time step. Specifically, if a node ni has an ordernode (Section A.2.3) nj, on a given cycle, 

then on the next cycle ni’s ordernode must be in the node neighborhood [nj]1 

(Definition A.13) of the old ordernode nj, and its new orderface will be a face connected to 

the new ordernode.

This assumption allows us to do a local search each cycle for the next ordernode, based on 

the most recent ordernode. If the search cannot be limited in some such way, then scalabil-

ity is impossible. However, this method still needs a starting point: the initial ordernode 

must be determined by other means.
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The simplest method is a brute-force global search. Each node on a given side of the con-

tact surface calculates the distance to every node on the other side of the surface. The clos-

est one found is that node’s ordernode. Assuming each side has O(N) nodes, this 

procedure takes O(N2) time on a single processor.

It is possible (at least on present-day problems and machines) to replicate all nodal coordi-

nates onto M processors of a parallel machine, and to assign 1/M of the distance calcula-

tions to each processor. This reduces overall time for global ordering to O(N2/M), which 

is typically "fast enough" for an initialization phase that only gets executed once at the 

start.

However, in some recent large runs of several hundred million zones, it was observed that 

the global ordering could occupy several minutes of time, and so a further refinement has 

been implemented. The longest coordinate dimension of the problem (x, y, or z) is deter-

mined, and then the contact nodes on each side are sorted, using their coordinate in the 

selected dimension as the sort key.

The sorted list of contact nodes on one side (the active side) is divided into M equally-

sized contiguous sets, and each such set is assigned to one processor. That processor deter-

mines the coordinate range in the sorted dimension of its active set, and from this selects 

an overlapping range from the passive side’s sorted list. For each active node, the proces-

sor now only searches the overlapping range of the passive side. Following this, active and 

passive sides are reversed, and the operation repeated.
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Using this approach on M processors, the cost of the search, per processor, is reduced to 

O(N2/M2), with the additional cost of the sorts, O(NlogN).

When the ordernode and orderface for each node have been determined, they are written 

into global arrays in Sidx index space, using global OR operations, where each processor 

just fills in the nodes it is responsible for. The result is that all processors momentarily 

have full order information for the contact surface. From this, each primary domain can 

extract the ordernode and orderface for just its own local nodes, storing this information 

into the nodeStuff blocks (Section A.4.1) of the local nodes. At this point the global con-

tact information arrays are freed.

A.6.8  Master Side Static Decomposition

As discussed in Section A.5.3, the nodes on the master side of the contact surface are 

assigned statically to the various contact domains. Every cycle the master nodes will be 

sent to the same CDs. The contact proximity mapping  (Definition 5) is then used to 

determine where the slave nodes are assigned during any particular cycle.

Three different static decompositions have been implemented. These are discussed in the 

following subsections. In each case the decomposition is actually done in terms of contact 

faces. This is the more natural approach to dividing up regions, and is inherited from the 

bulk decomposition, in which zones (not nodes) are assigned uniquely to the various bulk 

domains. After contact faces are partitioned an arbitration pass is made to convert from the 

face decomposition to a nodal decomposition. This is discussed in Section A.6.8.4.

X
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Actually, a fourth method of decomposition is also available, whereby the user supplies a 

file which specifies for each master node which CD it is assigned to. This method is useful 

for debugging the code, but is not practical for real applications.

A.6.8.1   Decomposition by Contact Surface Index

This is the most naive decomposition, and is simply based on the Sidx (Section A.3.4) 

ordering of the master side. The list of all faces is sorted by Sidx index, and then divided 

into N equally-sized contiguous subsets, where N is the number of contact domains.

While this method is simple to understand and implement, it has some drawbacks. Contact 

domains tend to come out as one-dimensional strings of nodes on the two dimensional sur-

face, which leads to a 4-to-1 ratio of ghosts to assigned nodes (for neighborhood radius of 

2). While this is an improvement over isolated nodes (with a 24-to-1 ratio), it can be 

greatly improved upon. 

A.6.8.2  METIS RSB Decomposition

This method of decomposition uses the METIS [30] software library to produce a decom-

position based on the Recursive Spectral Bisection method. It is beyond the scope of this 

work to discuss RSB decomposition in great detail. But, roughly speaking, RSB operates 

on a graph wherein the contact faces are the "nodes" of the graph, and the graph edges 

connect any two "nodes" (contact faces) which are in contact (i.e. share a contact node). 

The goal of the RSB algorithm is to produce a partition of the graph which has roughly the 

same number of graph "nodes" in each part, and which cuts through the minimum number 

of edges in doing so. Since each cut edge in effect implies the need for ghost data, the RSB 
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decomposition has the result of minimizing ghost data requirements, which in turn mini-

mizes communication. Given the nature of the contact surface used to build the graph, the 

decomposition has the effect of minimizing the perimeter / area ratio. Where the decom-

position in the previous section tends to produce 1-D strings, the METIS decomposition 

tends to produces nearly square rectangles, with as many "internal" nodes as possible. 

Thus this decomposition more nearly satisfies the requirements for a "good" decomposi-

tion set out in Section A.5.2.

A.6.8.3  Master-Stays-Home Decomposition

As the problem size N grows, the amount of contact surface work only grows as N2/3. If 

the number of processors is increased proportionally to N, the size of the bulk domain on 

each processor remains constant, while the size of the contact domains, if distributed 

evenly across the machine, actually shrinks. This can lead to a situation in which the con-

tact communication time, due to message latency time, swamps the contact enforcement 

time, and there is no gain in further reducing the domain size. In fact it can become more 

expensive to use all processors than to use an appropriate subset.

To compensate for this "shrinking workload" effect, a decomposition was developed to 

keep the amount of contact work per processor constant as problem and machine were 

simultaneously scaled up, but for a shrinking subset (proportional to N2/3) of all proces-

sors. The other processors do no slide calculations, and unless they have slave nodes do 

not participate in any slide communication. This decomposition can be accomplished 

quite simply by assigning each master node to the same processor that it lives on in its pri-

mary domain. 
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A.6.8.4  Master Side Nodal Decomposition

The preceding decompositions are all face decompositions: they assign each face to pre-

cisely one Contact Domain. Nodes are shared by more than one face: thus a method is 

needed to determine a nodal decomposition based on the face decomposition.

The primary goal is to assign an equal number of nodes to each Contact Domain. It is also 

desirable to create a "smooth" interface between domains, in order to minimize the num-

ber of required ghost nodes. Figure A-24(a) gives an example of a jagged interface, while 

Figure A-24(b) shows a smoother alternative. The circled nodes are ghost nodes to the 

Contact Domain on the left (assuming a radius of 1). It can be seen that the jagged bound-

ary requires more ghost nodes. 

FIGURE A-24

To accomplish this end, the average number of nodes per CD is calculated. Then all nodes 

which fall into only one CD based on the face decomposition are assigned to the CD of 

their face. The remaining nodes, which are shared by more than one CD, are assigned to 

the lowest numbered sharing CD which does not yet have an average number of nodes. If 

all associated CDs have reached their average, then the nodes is assigned to the CD with 

the smallest current node count.

(a)                                                        (b)



      147
A.7  MAIN LOOP OVERVIEW

The work done each cycle during the contact phase can be divided into a number of sub-

phases:

 During PD↔PD communication each primary domain shares with its neighbor domains 

the updated state of its local nodes that are proxy nodes for those neighbors. Specifically, 

it shares updated Rule 1 and Rule 2 information (Section A.4.1.3, Section A.4.1.4) to 

allow the neighboring PDs to determine where to send local nodes that are in the neigh-

borhoods of these proxies.

During the PD→CD communication subphase, each primary domain determines which 

contact domains need each of its local nodes, as either assigned or ghost nodes, and sends 

them there.

During the contact domain construction subphase, each contact domain receives all the 

nodes and faces sent to it (possibly redundantly) from various primary domains, and cre-

ates a new temporary index space (the Contact Domain Index Space, or Cidx) to hold its 

part of the problem.

During the Calculation subphase, the net force on each of the assigned nodes and its 

resulting new position are calculated. As part of this task the order relations between 

opposing sides are updated.

The CD↔CD communication subphase is actually embedded within the Calculation sub-

phase, and allows intermediate results to be communicated between CDs, so that each can 
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work with updated values for ghost nodes, rather than redundantly computing those val-

ues.

Finally, during the CD→PD communication subphase the results are returned to the 

appropriate primary domains, and stored at their permanent (Pidx or Bidx) indices.

A.8  PD<-->PD Communication

The pattern for PD↔PD communication is static. During initialization (Section A.6.5), 

both sender and receiver invoices are created between each pair of neighbor primary 

domains. Each PD loops through the list of its neighbor domains. For each neighbor it 

accesses its sender invoice. For each local node in the invoice it packs into a send buffer 

the node’s Rule 1 CD and Rule 2 CD list. The send buffer is then sent to the neighbor PD. 

The neighbor PD has a matching invoice, so there is no need to identify the nodes being 

sent, but simply the data in invoice order. The neighbor PD uses the matching invoice to 

copy the current data to the nodeStuff blocks of the corresponding proxy nodes. 

Section A.6.5 goes into more detail about the construction of the static PD↔PD invoices.

A.9  PD<-->CD Communication

In order for a contact domain to do its calculations, it must receive the data from the pri-

mary domains. No data is retained in the contact domain from one cycle to the next (with 

one exception; Section A.12.3). Furthermore the contact domain is passive in the determi-

nation of its work each cycle. The primary domains determine what to send to each con-

tact domain, and the contact domain simply works with whatever it gets.
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For each local node the PD determines which CDs to send the node to, and whether it is 

sent as an assigned node or a ghost node, and then sends it. How this overall goal is 

accomplished is discussed in the following subsections.

A.9.1  Rule 1 and Rule 2 Generators

Each primary domain determines which contact domain(s) each of its local nodes must be 

sent to each cycle. It does this by determining a set of generators for each CD it sends to, 

and a secondary set of nodes generated by the set of generators.

A Rule 1 generator for a particular CD is a node that has been assigned  to that CD. A 

given node may only be a Rule 1 generator for one CD. A Rule 2 generator is a node that 

is the order node of a Rule 1 generator. A node may be a Rule 2 generator for more than 

one CD, since nodes assigned to different CDs may share the same order node.

If a node local to a primary domain is a generator for a contact domain, then the PD sends 

the node to the CD. If a generator node is either local or proxy to a PD, then it generates 

the requirement that all its neighbor nodes that are local to the PD also be sent to that CD.

The Rule 1 generators of a CD are identically the assigned nodes of the CD. It is just a dif-

ferent perspective. Rule 2 generators and any generated nodes (unless they are also Rule 

1) are ghost nodes of the CD.

A.9.2  Tag Lists

Tag lists are Pidx-based arrays that are associated with particular CDs, and are used to flag 

the nodes or faces in the primary domain that must be sent to that contact domain this 
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cycle. There are separate node and face tag lists. For instance, if a node with Pidx i is to be 

sent to CD j, then the node tag list associated with CD j will have a non-zero value in the 

ith element.

At the start of the PD→CD subphase there are no tag lists, as the PD does not yet know 

which CDs are its neighbors this cycle. Each PD loops through all the nodes in that PD, 

including proxy nodes. For each node it examines the node’s Rule 1 CD and Rule 2 CD 

list. For each CD that it finds there, if there are no tag lists associated with that CD yet, it 

allocates node and face tag lists for it and initializes them to zero. At this point it also adds 

the CD to the list of neighbor CDs to this PD. If the tag lists already exist, it just uses 

them.

For each node in the current node’s neighbor node list (Section A.4.1.5) it decrements the 

value in the node tag list at the neighbor node’s Pidx. Similarly, for each face in the cur-

rent node’s neighbor face list (Section A.4.1.6) it decrements the value in the face tag list 

at the neighbor face’s Pidx. If the current node itself is a local (not proxy) node, and if the 

CD is the current node’s Rule 1 CD (i.e. the node is assigned to that CD), then the value at 

its Pidx in the node tag list is overwritten with a large positive integer.
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For example, consider the primary domain in Figure A-25, and assume the neighbor 

radius is 1.

FIGURE A-25

Assume the PD->CD stage is just starting, so there are no tag lists. Suppose node 0 is 

assigned to CD 3 (i.e. its Rule 1 CD is 3). Then when node 0 is considered, a node and 

face tag list for CD 3 will be allocated and initialized:

At this point CD 3 will be added to the list of CDs that this PD talks to. Node 0 has a node 

neighbor list of {0, 1, 4, 5}, so the tag list will be updated to:

Finally, since node 0 is local and CD 3 is its Rule 1 CD, the tag list becomes:

This tag list technique has two useful features:

0       1       2       3

4       5       6       7

8       9       10     11

12     13     14     15

CD 3 node Tag List

 0       0       0       0       0       0       0    . . . . . . . . . . . . .        0

  CD 3 node Tag List

-1      -1      0       0      -1       -1     0        . . . . . . . . . . .        0

CD 3 Node Tag List

100     -1      0       0       -1      -1      0       . . . . . . . . . .        0
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        1. It removes redundancy, as a single node will appear as ghost at most once

        2. it distinguishes assigned nodes from ghosts: assigned are positive, ghosts negative

For example if node 1 is also assigned to CD 3, then it will decrement the tag list for 

Pidx’s {0, 1, 2, 4, 5, 6}, and then overwrite the value at Pidx 1:

Note that Pidx 0 is still positive, while Pidx 4 and 5 are still negative.

The corresponding face lists use the decrement operator only, since faces are not distin-

guished between assigned and ghosts.

A.9.3  Invoices

Invoices are lists of nodes to be sent to another domain. In the case of PD→CD communi-

cation, the nodes are sent to a contact domain. As discussed in Section A.3, a given node 

may have several different "names", or indices, representing its order in different index 

spaces. The three relevant index spaces here are bulk domain or Bidx, primary domain or 

Pidx, and contact surface or Sidx. It is necessary to keep versions of an invoice in all three 

of these indexes, as explained below.

When the data is being marshalled into a buffer to be sent to a particular CD, some of the 

information about a particular node is stored in the bulk domain node (e.g. coordinates). 

Other data, which only exists for contact nodes, is stored in the nodeStuff struct at the Pidx 

index of the node. So both Bidx and Pidx must be known to gather all the nodal data. On 

the other hand, when the data is sent to the CD the Sidx version of the invoice is sent with 

 99     100    -1      0      -2      -2     -1      0      . . . . . . .       0

CD 3 Node Tag List
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it, so that the contact domain knows which nodes it got. The Sidx index space is "global", 

in the sense that it is independent of any domain spaces. This allows the contact domain to 

eliminate any redundancy, when the same node is sent from multiple domains.

There are "assigned node invoices" and "ghost node invoices". The assigned node 

invoices contain the nodes actually assigned to the CD. The CD will update the state (posi-

tion, etc.) of its assigned nodes and return the updated state to the sending primary 

domain(s). Ghost node invoices contain the nodes that are not assigned to that CD, but are 

in the neighborhood of an assigned node or its order node.

In addition to the node invoices there are also face invoices, in Bidx and Sidx versions 

(faces don’t have a Pidx domain). These are in effect ghost invoices, since faces are not 

assigned to CDs.

The invoices are built directly from the corresponding tag lists. A tag list is scanned from 

start to finish. When a non-zero entry is found, the Pidx at which it is found is added to the 

Pidx version of either the assigned invoice (if the non-zero tag list entry is positive) or the 

ghost invoice (if the entry is negative). The Pidx is also applied to the primary domain’s 

Pidx→Sidx and Pidx→Bidx maps to find the node’s corresponding Sidx and Bidx indices, 

and these are added to the Sidx and Bidx versions of the invoice.

Since there are three versions of node invoices for both assigned and ghost nodes, two ver-

sions of face invoices, and two sides, master and slave, there are sixteen invoices in all 

associated with a particular (PD,CD) pair.
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A.9.4  msgBases

A msgBase is a data structure used to control each endpoint of point-to-point communica-

tion between primary domain and contact domain. A given primary domain has a separate 

msgBase for each contact domain it communicates with. Likewise, each contact domain 

has a separate msgBase for each primary domain it communicates with. Since the set of 

CDs a primary domain will talk to varies from cycle to cycle, the corresponding msgBases 

are allocated dynamically each cycle, and then freed at the end of the cycle.

Since primary domains and contact domains include both master and slave sides, their 

msgBases contain fields for both sides.

In Figure A-26, it can be seen that a separate msgBase is used for each domain communi-

cated with, with as many or few allocated as needed. For instance PD 3 has no contact sur-

face nodes, thus it doesn’t communicate with any CD, and needs no msgBase.

FIGURE A-26

Primary domain and contact domain msgBases vary slightly. The primary domain msg-

Base is discussed in the following section, followed by a section on the contact domain 

msgBase.

mBase mBase mBase mBase mBase  mBase  

mBase mBase mBase mBase mBase  mBase

CD 0                 CD 1                   CD 2                CD 3

PD 0                 PD 1                  PD 2                  PD 3
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A.9.4.1  Primary Domain msgBases

If, for a given primary domain, there are any tag lists (Section A.9.2) created for a particu-

lar CD, then a msgBase is allocated to control information flow between the primary 

domain and that contact domain.

A primary purpose of the msgBase  is to store the 16 invoices (8 master, 8 slave) but it is 

also used for buffer management. A high level view of the msgBase is shown in 

Figure A-27:

FIGURE A-27

Rank is the processor number, or MPI rank, of the contact domain associated with this 

msgBase.

Integer and floating-point buffers are sent separately, and later received back from the CD. 

The send & receive counts keep track of the sizes of all message buffers, int and float, 

incoming and outgoing.

The MPI message handles are used to check the status of asynchronous communication 

operations associated with this msgBase. For instance this processor (as a primary 

domain) will allocate receive buffers and issue receives of results from various contact 

domains associated with different msgBases, before the results are actually ready. At 

Rank
Send & Rcv counts
MPI message handles
buffer position pointers
buffer start pointers
invoice sizes
invoices

    msgBase

nbrPDs Table
ghostCDs Table
ghostHomeCD list
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some later point it will wait for the receives it issued earlier to complete, interrogating 

MPI via the message handles for those receives.

Buffer position pointers are used to keep track of the current locations in the various buff-

ers being read and written.

Pointers to the buffers keep track of where the current send & receive int and float buffers 

are stored.

Invoice sizes are just the number of nodes in each invoice. There are only 6 unique sizes, 

since some of the invoices are the same length (i.e. the Bidx, Pidx and Sidx versions). 

These six are: master assigned nodes, master ghost nodes, slave assigned nodes, slave 

ghost nodes, master faces, and slave faces.

The invoices themselves are the 16 invoices described in the previous section.

Finally, the msgBase contains three tables for both master and slave sides, which are built 

during construction of the invoices:

The nbrPDs table has an entry for each node in the assigned or ghost invoice that has a 

non-empty Neighbor PD list (Section A.4.1.7). For each such node, the nbrPDs table con-

tains the Sidx of the node, the length of its Neighbor PD list, and then the neighbor PD list 

itself.

The ghostCDs table has an entry for each node assigned to the CD that is also sent as a 

ghost node to any other CDs. For each such node, the ghostCDs table contains the Sidx of 
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the assigned node, the number of CDs on which the node is a ghost, and a list of those 

CDs.

The ghostHomeCD list has an entry for each node in the ghost invoice, and simply con-

tains the CD where that node is an assigned node.

A.9.4.2  Contact Domain msgBases

Each contact domain needs to allocate a separate msgBase for each primary domain that it 

communicates with this cycle. But this brings up an issue: how does the contact domain 

know which primary domains will send it data?

The primary domains determine which contact domains to talk to as a result of construct-

ing the tag lists (Section A.9.2). A simple approach to the inverse problem would be to 

make this information globally available. For instance, each PD could broadcast its 

"neighbor" CDs to all processors. However, one goal of this algorithm is to avoid all non-

scalable communication, which rules out broadcasts. Instead, a more sophisticated method 

is used by the contact domains to determine, at the end of a cycle, which PDs will commu-

nicate with it next cycle. This nextTimePDs list is the only state preserved across cycles 

by the contact domain. The details of building nextTimePDs are discussed in 

Section A.12.3. Here the existence of the list is simply assumed.

Each contact domain loops through its nextTimePDs list and allocates a msgBase for each 

PD. This msgBase uses  the same structure as the primary domain msgBase, but its use of 

the invoices is slightly different. The Sidx invoices in the CD msgBase are identical to the 

corresponding invoices of the PD msgBase. They are simply sent during the communica-



      158
tion, and copied into the CD msgBase invoice. However, the contact domain doesn’t make 

any use of Pidx or Bidx index spaces. In their place is a single index space local to the con-

tact domain, the Cidx. (To be precise there are actually four Cidx index spaces, for master 

and slave, nodes and faces. But this is also true of the Pidx index space). A copy of the 

invoice in the Cidx space will be built during construction of the contact domain, dis-

cussed in Section A.10.3.

A.9.5  Sending and Receiving

As a preliminary step in the communication, the primary domain loops through its set of 

msgBases, and calculates the size of int and float buffers required for each msgBase. It 

does this by extracting the invoice lengths from the msgBase and multiplying by appropri-

ate factors (number of ints per node, number of floats per face, etc.), then adding the 

lengths of any tables that must be sent.

These buffer sizes are used to allocate the send buffers for the msgBase, and they are also 

sent to the corresponding contact domain. The contact domain then uses the lengths to 

allocate the receive buffers for the connection, and issues asynchronous reads of the 

expected int and float buffers. By this time the contact domain msgBases have already 

been allocated, based on the nextTimePDs list, so the CD loops through its msgBases to 

determine which PDs to expect to receive lengths from. (Note: each processor at this point 

is functioning at least potentially as both a primary domain and a contact domain, so the 

contact domain cannot wait synchronously for data. It still has to send data as a primary 

domain. To wait synchronously at this point would likely result in deadlock).
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The next stage is to fill the send buffers. The primary domain loops through its set of msg-

Bases again. For each msgBase it fills an integer and floating point buffer. It starts with 

the master side, then the slave side. For each side it first puts the lengths of the various 

invoices into the integer buffer: (i.e assigned node count, ghost node count, and face 

count). Then it copies the Sidx versions of the corresponding invoices into the integer 

buffer. For each assigned node it copies the Sidx of the assigned node’s order node and 

order face. Finally, it copies the nbrPDs table, the ghostCDs table, and the ghostHomeCD 

list (Section A.9.4.1) into the integer buffer.

For each node, assigned or ghost, the coordinates, velocities, and initial accelerations 

(computed as though nodes were free-surface) as well as the amount of mass apportioned 

to the node are packed into the floating-point send buffer. For each face, the current stress 

in the bulk zone underlying the face is packed into the float buffer.

When all the data for both buffers have been packed into the buffers, the buffers for this 

msgBase are sent to the destination CD, using a pair of asynchronous sends.

The destination CD has already allocated the receive buffers and issued asynchronous 

receives, as discussed earlier in this section. This allows the data transfer to occur, without 

further interaction from either primary domain or contact domain. The primary domain 

can now move on to the next msgBase in its list and repeat the whole process.

When all sends for all primary domain msgBases have been completed, the processor 

switches roles and, as a contact domain, loops through all its contact domain msgBases. 

For each msgBase, it issues a Wait for completion of the asynchronous receive that it 
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issued earlier. This Wait will not return until the data has all been transferred to the int and 

float message buffers of that msgBase.

After all the contact domain msgBases have received their buffers, the processor switches 

back to primary domain mode, waits for all its asynchronous sends to complete, and then 

deallocates the storage used for the send buffers.

To see why the last Waits  for send completions are necessary, consider Figure A-28:

FIGURE A-28

Each primary domain shares a processor with a contact domain. In this simple example 

each of the primary domains and each of the contact domains have one msgBase. PD 0 

sends to CD 1, PD 1 sends to CD 2 and PD 2 sends to CD 0. Suppose that processor 1 is 

way behind processors 0 and 2, due to some load imbalance or OS interrupt. So it issues 

no sends or receives until some later time. Then PD 0 issues an asynchronous send to CD 

1, but the send doesn’t happen because CD 1 hasn’t issued a receive yet. Following that, 

CD 0 issues an asynchronous receive from PD 2, and then waits for completion of the 

receive. If PD 2 is keeping up and performs the send, this wait will complete. But PD 0 

cannot then release its send buffers to CD 1, since the transfer hasn’t happened yet. Thus 

 PD / CD
0

 PD / CD
1

 PD / CD
2
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the Wait for primary domain send completions is necessary, before send buffers can be 

released.

A.10  Building the Contact Domain

After the PD→CD communication pass is complete, the contact domains are in a raw 

form. Each contact domain has a number of msgBases, each associated with a source pri-

mary domain, and each msgBase has an int and a floating point buffer containing the con-

tributions from that primary domain. The next task is to turn this raw data into a cohesive 

and integrated form from which the contact calculations can be made.

A.10.1  Initializing the Sidx Invoices

The contact domain loops through its msgBases. For each msgBase, it firsts extracts the 

lengths of the various invoices from the int buffer and copies them to the appropriate 

fields of the msgBase. Then, in lieu of physically copying the Sidx invoices from the int 

buffer into newly allocated storage, it simply sets the invoice pointers in the msgBase to 

point into the int buffer at the appropriate invoice location. The indices in the Sidx 

invoices are independent of any domain, or in other words, of the parallel decomposition, 

and so serve as global IDs of  the nodes and faces involved.

A.10.2  Building the  Sidx<−>Cidx Maps

Each node and face in the contact domain, whether assigned or ghost, must be assigned a 

local or Cidx index so that the code knows how to access it. Normally the index represents 

the offset from the beginning of an array. For instance, if X is the array containing the X 
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coordinates of nodes, and if a node is assigned a Cidx index i, then the x coordinate for 

this node will be stored at X[i].

The same node may be sent from multiple primary domains. This will occur when a node 

is on the boundary between primary domains. All such domains will consider the node to 

be local to it, and will send copies to any contact domains that require the node. Each pri-

mary domain will have its own Bidx and Lidx indices for the node, but they will all have 

the same Sidx. Thus the redundancy can be removed upon arrival in the CD by allowing 

only one Cidx for each Sidx. This mapping, between an Sidx and its corresponding Cidx, 

is called the Sidx→Cidx map. The inverse mapping is, unsurprisingly, called the  

Cidx→Sidx map.  

To build these maps, the CD first loops through its msgBases, extracts all the Sidx 

invoices of a given category (e.g. master assigned nodes), and concatenates them. Then it 

sorts this concatenated list of Sidx’s and removes any redundant entries. The result is a list 

of the nodes (or faces) on the CD in that category. The following example illustrates this. 
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In this example there are two CD msgBases. For brevity, only the master side invoices are 

shown.

FIGURE A-29

The master assigned nodes in this example will be concatenated into the list:

                                       {0, 1, 3, 5, 6, 5, 6, 8, 10}

then sorted to produce the list:

                                       {0, 1, 3, 5, 5, 6, 6, 8, 10}

Then uniq’d to produce the list:

                                       {0, 1, 3, 5, 6, 8, 10}.

Similarly the master ghosts are combined into the list:

                                       {12, 13, 15, 17, 18, 19, 21}

and the master faces:

                                       {80, 82, 84, 86, 88, 90, 92, 94}

Note that there are no redundant faces. A contact face always belongs to one and only one 

domain.

msgBase 0                                                  msgBase 1

Master Assigned                                         Master Assigned

{0, 1, 3, 5, 6}                                               {5, 6, 8, 10}

Master Ghosts                                              Master Ghosts

{12, 13, 15, 17}                                            {17, 18, 19, 21}

Master Faces                                                 Master Faces

{80, 82, 84, 86}                                             {88, 90, 92, 94}
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The next step is to concatenate the master assigned nodes and master ghosts, and sepa-

rately the slave assigned nodes and slave ghosts. For the example above this leads to the 

list of master nodes:

                                    {0, 1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 18, 19, 21}.

This list is in effect the master Cidx -> Sidx map. This is more explicit in the following 

figure:

FIGURE A-30

The slave map is produced in a similar fashion.

The inverse Sidx→Cidx map can be easily generated from the Cidx→Sidx map. For the 

above example, an array as long as the Sidx index space is allocated and initialized to -1. 

Then the Cidx→Sidx map is scanned. For entry i (i.e. Cidx i) its corresponding Sidx j is 

read. Then at the jth location of the Sidx→Cidx map, the value i is stored.

For the above example, assuming the Sidx index space is of length 24, the resulting 

Sidx→Cidx map is:

FIGURE A-31

A.10.3  Cidx Invoices

The Sidx -> Cidx maps can now be used to create Cidx versions of the various invoices in 

each msgBase. The Cidx invoices will be used when the nodal data is read in from the int 

and float buffers, to indicate at which (Cidx) index in the various CD data arrays to store 

Cidx     0    1    2    3    4    5    6    7     8    9    10    11    12    13

Sidx     0    1    3    5    6    8   10  12   13  15   17    18    19     21

Sidx   0   1   2   3   4   5   6   7   8   9  10  11  12 13 14  15 16 17  18 19  20  21  22  23

Cidx   0   1  -1   2  -1   3   4  -1   5  -1   6   -1   7   8  -1   9  -1  10  11  12  -1  13  -1  -1 
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the data for a given node. The Cidx invoices are also used later to gather the data to be 

returned to the primary domain corresponding to each msgBase, after contact processing 

is completed.

To create a Cidx invoice, first an int array is allocated of the same length as the corre-

sponding Sidx invoice. The the Sidx invoice is scanned. At a given offset i in the Sidx 

invoice is an Sidx index j. j is applied to the Sidx→Cidx map to find the Cidx index k cor-

responding to Sidx index j. k is then written into the ith location of the Cidx invoice under 

construction.

Returning to the previous example, msgBase 1 had a master assigned node Sidx invoice 

{5, 6, 8, 10}. To create the corresponding Cidx invoice, an array of 4 ints is first allocated. 

Then the first index in the Sidx invoice, 5, is applied to the Sidx -> Cidx map of 

Figure A-31 to get the corresponding Cidx, 3. Processing the whole Sidx invoice produces 
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the Cidx invoice {3, 4, 5, 6} for msgBase 1 master assigned nodes. This same process is 

applied to all other invoices in both msgBases to produce Cidx versions of all invoices:

FIGURE A-32

A.10.4  Cidx Connectivity

The Connectivity and the Dual Connectivity were defined in Section A.2.2. In the current 

version of the algorithm, the full connectivity information for each side exists on all pro-

cessors. However, it is expressed in Sidx indices. Part of the initialization of the contact 

domain each cycle involves creating a more limited set of connectivity information, just 

involving faces and nodes on the contact Domain, and expressed in the more immediately 

usable Cidx index spaces.

The Sidx index of a face provides the offset into the full connectivity table of the list of 

nodes that constitute that face. These nodes are themselves expressed in Sidx indices. To 

create a local version of connectivity, the Cidx→Sidx face map (master or slave) is looped 

through. For each Cidx, the corresponding Sidx is used to get the four nodes of the face. 

msgBase 0                                                  msgBase 1

Master Assigned                                         Master Assigned

Sidx {0, 1, 3, 5, 6}                                       Sidx {5, 6, 8, 10}
Cidx {0, 1, 2, 3, 4}                                       Cidx {3, 4, 5, 6}

Master Ghosts                                              Master Ghosts

Sidx {12, 13, 15, 17}                                    Sidx {17, 18, 19, 21}
Cidx {7, 8, 9, 10}                                          Cidx {10, 11, 12, 13}

Master Faces                                                 Master Faces

Sidx {80, 82, 84, 86}                                    Sidx {88, 90, 92, 94}
Cidx {0, 1, 2, 3}                                            Cidx {4, 5, 6, 7}
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The Sidx→Cidx node map is used to convert these nodes from Sidx to their local Cidx 

indices, and the list of nodes is then copied into the local connectivity at the Cidx index of 

that face.

After this local version of the connectivity list is built for each side, the dual connectivity 

is constructed, which supplies for each Cidx node a list of Cidx faces that touch the node. 

To accomplish this, the set of faces in the connectivity list is looped through. For each 

face, its Cidx is added to the dual list of each of the four nodes in the face.

A.10.5  Reading Nodal and Face Data

The actual data (nodal coordinates, facial stresses, etc.) can now be read in, primarily from 

the float buffers associated with the msgBases.

First, all the local storage to hold this data is allocated. Then the contact domain loops 

through its set of msgBases. For each msgBase it loops through the invoice set in predeter-

mined order (i.e. master assigned nodes in invoice order first, then master ghosts, etc.). 

The data was stored into the buffers by the corresponding primary domain in the same pre-

determined order. As the data for a particular node or face is arrived at in the buffers, the 

Cidx version of the invoice just described (Section A.10.3) supplies the Cidx index into 

the various arrays at which to store the incoming data.

The nbrPDs, ghostCDs, and ghostHomeCD tables (Section A.9.4.1) are read into the msg-

Base and processed from there to assign each node a list of PDs in its proximity (as a pri-

mary domain node), each assigned node a list of CDs where the node resides as a ghost, 
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and each ghost node the CD where the ghost is unique. Pointers to each of these lists are 

stored in Cidx-based arrays.

A.10.6  CD <-> CD Invoices

During the contact calculations, intermediate values computed for assigned nodes are sent 

to neighboring CDs where the nodes are ghost. This greatly reduces the number of ghost 

nodes required on any given CD and the amount of redundant calculations made involving 

those ghost nodes. As in PD↔PD communication, the CD↔CD communication is 

"local". A neighbor CD is simply one that shares (as a ghost) one or more assigned nodes. 

The number of neighbors does not grow with problem size or processor count.

In addition to the primary use of CD↔CD communication, a secondary use supports the 

mechanism for determining which PDs will communicate with the CD next cycle. This 

was touched on in Section A.9.4.2, when the nextTimePDs list was introduced, and will 

be expanded in Section A.12.3. It is part of the mechanism for allowing the overall com-

munication pattern to evolve without making any use of global or nonscalable communi-

cation.

To build the CD↔CD invoices, the CD loops through all its assigned nodes for each side 

independently. For each node it examines the node’s ghostCDs list. For each CD in the 

node’s ghostCDs list, it adds the node’s Sidx index to an invoice specific to that CD and 

contact side.
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After this process completes, each CD has a set of invoices, master and slave, for each 

neighbor CD that it sends to, and the invoices contain a list of the Sidx indices of assigned 

nodes it will send updated values for, to the destination CD.

Unlike PD↔PD communication, CD↔CD communication is not symmetrical. For 

instance, CD 1 may have an assigned node which is also a ghost on CD 2, and yet CD 2 

may have no assigned nodes that are also ghost on CD 1. Also unlike PD↔PD communi-

cation, the communication pattern is dynamic, not just in which nodes are sent but even in 

which CDs communicate from one cycle to the next. So a second task of the CD↔CD 

setup is for each CD to determine which CDs will send to it. To do this, the CD loops 

through its ghost nodes, master and slave, and builds a list of the home CDs of these 

nodes, removing redundant entries.

A.11  Contact Calculation

In this section the algorithm used to actually enforce the contact between the two sides is 

described. This discussion will be focused on the work done by a single contact domain. 

Each contact domain is constructed to be largely self-contained for the purpose of contact 

calculations. An exception to this is when intermediate values for ghost nodes are updated, 

from the domain where they are assigned.

The goal of the contact calculation is to determine the new positions, velocities and order 

nodes of each assigned node in the contact domain. These tasks are broken down into a 

number of subtasks described in the following subsections.
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A.11.1  Parametric representation of faces

Each contact face, determined by its four corner nodes, is represented as a bilinear surface, 

so that the entire contact side is a continuous, piecewise differentiable surface. The equa-

tion of the surface for a given face is determined by the coordinates of its corner nodes. 

Since the face is a 2-D surface in 3-D space, it is most simply represented by using two 

parameters, s and t. 

Let X(s,t) represent the surface, so that for a particular s and t, X(s,t) is the vector of carte-

sian coordinates at that s and t. Another way to express this function is:

(EQ 1)

Consider the face in Figure A-33. The coordinates at the four corners, X1, X2, X3, and X4 

(where X1 = (x1, y1, z1), etc.), are known. Note that these corner nodes are not in general 

coplanar.Define the parametric coordinates s and t so that at X1,  and , and 

so on, as shown in the figure.

FIGURE A-33

x x s t,( )=
y y s t,( )=
z z s t,( )=

s 1–= t 1–=

X3
s=1,t=1 X4

s=-1,t=1

 X1
s=-1,t=-1 X2

s=1,t=-1
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From these known values at the corners it is quite simple to write the parametric form of 

the surface: 

To see that this is true, plug in the (s, t) at any of the corners. Three of the terms become 

zero, and the remaining term evaluates to Xi, the Cartesian coordinates of the corner.

Further, X(s,t) is clearly bilinear. If either s or t is held constant, X(s,t) becomes linear in 

the remaining parameter.

Another convenient form for calculation is:

(EQ 2)

where:

(EQ 3)

The set {A, B, C, D} for a given face is referred to as the parametric coefficients for that 

face. The parametric coefficients of each face in the contact domain are calculated and 

stored. Note that they are vector quantities.

A.11.2  Basis Functions

In this section the discussion of the previous section is cast in a more general form. Con-

sider again the equation:

X s t,( ) 1
4--- X1 1 s–( ) 1 t–( ) X2 1 s+( ) 1 t–( ) X3 1 s+( ) 1 t+( ) X4 1 s–( ) 1 t+( )+ + +[ ]=

X s t,( ) A Bs Ct Dst+ + +=

A 1
4--- X1 X2 X3 X4+ + +[ ]=

B 1
4
--- X1– X2 X3 X4–+ +[ ]=

C 1
4--- X1– X2– X3 X4+ +[ ]=

D 1
4
--- X1 X2– X3 X4–+[ ]=
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If we define:

(EQ 4)

then we can write the equation for the surface of the face as

(EQ 5)

The  are referred to as the Basis Functions and are a fundamental building block of  

the Finite Element Method. (Actually, in Finite Elements the  as defined here would be 

considered restrictions of the basis functions to the single contact face under consider-

ation).

A defining characteristic of the basis functions are that they each take a value of 1 at one 

node and 0 at all other nodes.

The basis functions are useful for interpolating the values of either vector or scalar-valued 

functions anywhere on the surface of the contact face. Given any function F defined as Fi 

at the four corners i of a face, at any intermediate (s,t) F can be bilinearly interpolated as

(EQ 6)

X s t,( ) 1
4
--- X1 1 s–( ) 1 t–( ) X2 1 s+( ) 1 t–( ) X3 1 s+( ) 1 t+( ) X4 1 s–( ) 1 t+( )+ + +[ ]=

Φ1
1
4--- 1 s–( ) 1 t–( )=

Φ2
1
4
--- 1 s+( ) 1 t–( )=

Φ3
1
4--- 1 s+( ) 1 t+( )=

Φ4
1
4
--- 1 s–( ) 1 t+( )=

X s t,( ) X1Φ1 X2Φ2 X3Φ3 X4Φ4+ + + XiΦi s t,( )∑= =

Φi

Φi

F s t,( ) FiΦi s t,( )∑=
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In fact, this is exactly how the surface itself is defined: , where the 

Xi are coordinates.

In succeeding sections, the basis functions will be used to interpolate a number of different 

functions, such as normal to the surface, and normal force to the surface at a given (s,t). 

The method is to first know or calculate the values of the function at the nodes, Fi, then to 

determine (s,t), then calculate  for each i at the given (s,t), and finally to compute 

A.11.3  Face-Centered Areas

Next the area of each face in the contact domain is calculated. This can be expressed as:

(EQ 7)

One-point quadrature is used to evaluate this integral, with the integrand being sampled at 

. At this point:

(EQ 8)

so that:

(EQ 9)

With some algebra, it can be shown that:

X s t,( ) XiΦi s t,( )∑=

Φi s t,( )

F s t,( ) FiΦi s t,( )∑=

A
s∂

∂ X s t,( )
t∂

∂ X s t,( )× sd td
1–

1

∫
1–

1

∫=

s t 0= =

s∂
∂ X s t,( )

s t, 0=
B Dt+[ ] s t, 0= B= =

t∂
∂ X s t,( )

s t, 0=
C Ds+[ ] s t, 0= C= =

s∂
∂ X s t,( )

t∂
∂ X s t,( )×

s t, 0=
B C×=
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(EQ 10)

So to find the area of a given contact face, the parametric coefficients for the face are 

retrieved and used to calculate

(EQ 11)

A.11.4  Node-Centered Areas

For  purposes to be described later (Section A.11.9) it is useful to apportion  the contact 

surface area among the nodes. The approach used is to first initialize each nodal area to 

zero. Then, in a loop over all faces, the area of each face (computed above) is divided 

evenly among each of its four corner nodes and added to the accumulating area for those 

nodes.

A.11.5  Node-Centered Normals

At a later point in the algorithm (Section A.11.7) it will be necessary to determine the nor-

mal to the surface at arbitrary points on each contact side. The normal based directly on 

the piecewise-bilinear representation is not sufficient, because it changes discontinuously 

at face edges. Consider Figure A-34.  and  are well-defined, but  is not.

FIGURE A-34

B C× B B⋅( ) C C⋅( ) B C⋅( ) B C⋅( )–=

A 4 B B⋅( ) C C⋅( ) B C⋅( ) B C⋅( )–=

n̂1 n̂2 n̂3

n̂1 n̂2
n̂3?
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In order to provide a representation of the surface normal that is everywhere continuous, 

the normals are first calculated at each node. These values are then used as a basis for 

bilinear interpolation at all other points.

To calculate the normal at a node, the node is considered the juncture of all segments that 

it touches.

FIGURE A-35

In Figure A-35, node 5 is at the juncture of the four faces f1, f2, f3, and f4. Let  be the 

directed line segment from node i to node j. Then the normal at node 5 is defined to be the 

normalized sum of contributions from f1 through f4. The contribution from f1 is 

. This vector is perpendicular to the triangle formed by nodes 2, 4, and 5, and 

is proportional to its area. Similarly, f2’s contribution is , and so forth.

After the contributions from all adjoining faces are summed (vectorially), the resultant 

vector is normalized to unit magnitude.

 1                    2                3

4                  5                          6

7
8 9

f1                     f2

f3                   f4

Ri j,

R5 4, R5 2,×

R5 2, R5 6,×
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A.11.6  Node-Centered Normal Force

A stress tensor is defined on each contact face, which actually originates in the stress ten-

sor for the zone underlying that face in the Bulk Domain. Consider Figure A-36, which 

shows the same faces as Figure A-35, but also shows the underlying zones.

FIGURE A-36

In this figure  is the second-order stress tensor in the zone underlying contact face fi. 

For each face a contribution Fi to the normal force at the center node 5 is first calculated. 

Consider the face f1. Represent the stress tensor in cartesian index form: . Suppose , 

again in index form, is the normal vector for the face calculated by  as dis-

cussed in the preceding section. Then the stress vector on the face is the tensor product 

. This vector is not necessarily normal to the face. In order to calculate the normal 

component it must again be "dotted" with the normal: i.e. . 

This is not yet quite correct, because it provides force/area, while what is needed is actual 

force, since the mass will be treated as concentrated at the node. To accommodate this, the 

cross-product itself, , is used as , which is the normal scaled by the area. 

Since this appears twice in the product , the normal component of the force is 

wrong by a factor of the area of the face. This is corrected when the contributions from all 

f1                 f2

f3                    f4
4                        5                        6

7
8

9

1                    2                        3

σ1 σ2

σi

σi j, ni

R5 4, R5 2,×

σi j, nj

σi j, njni

R5 4, R5 2,× ni

σi j, njni
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adjoining faces are summed, by dividing the result by the sum of areas of contributing 

faces, thus providing an area-weighting of the contributions of all adjoining faces.

A.11.7  Parametric Coordinates

In order to calculate the force exerted on a contact node ni, referred to as the active node, 

by the contact surface side opposite the node, it is necessary to first pinpoint the location 

on the surface that is directly opposite the active node. The order face (Section A.4.1.2) is 

already known, so the problem reduces to finding the parametric coordinates (s,t) for that 

point on the surface of the order face at which a normal to the order face passes through ni. 

Figure A-37 depicts the situation:

FIGURE A-37

In Figure A-37, the active node ni is shown together with its order face. At the selected 

(s,t), the normal to the order face passes through the node ni. The point on the surface at 

this (s,t) is referred to as the image node (although it is not really a node), and (s,t) are the 

parametric coordinates of the image node.

The normal at a given (s,t) of the contact face, as discussed in Section A.11.2, is based on 

interpolation of the nodal normals defined at the corners of the order face. Suppose the  

ni

n̂

(s,t)
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normals at the four corners of the order face, calculated by the method described in 

Section A.11.5, are , , , and . Then at (s,t), the normal is given by

(EQ 12)

(EQ 13)

The parametric coordinates (s,t) of the image node are determined iteratively. A first 

approximation is made by setting (s0 ,t0) to one of the corners (i.e. ) if the node is 

close enough to that corner; otherwise (s0,t0) = (0, 0), the middle of the order face.

At a given (si, ti) the spatial coordinates are given by Eq 6:

(EQ 14)

where  are the spatial coordinate vectors of the four corners.

FIGURE A-38

In Figure A-38, Y is the current active node, X is its associated (unknown) image node, Xi 

is the ith estimate of X, and  is the normal to the face at Xi. In the ith step of the iteration, 

the component of Y - Xi that is tangential to the order face at Xi is added to Xi to approxi-

mate X. 

n̂1 n̂2 n̂3 n̂4

n̂ s t,( ) n̂iΦi s t,( )∑=

1± 1±,( )

X
i

XkΦk si ti,( )
k
∑=

Xk

Y

XXi

n̂
i

n̂
i
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(EQ 15)

If the order face is planar, a single step will yield X. If not, successive steps will converge 

to X. In any case, what is really wanted is the value of (s,t) at X. To determine 

, a Taylor Series expansion about Xi is performed:

(EQ 16)

where  is the partial derivative of  evaluated at (si, ti), and similarly for .

Recalling the previous expression for X using the parametric coefficients 

(Section A.11.1):

(EQ 17)

Then:

(EQ 18)

Equating the two expressions for Xi+1 in Eq 15 and Eq 16:

(EQ 19)

Since this is a vector equality it is equivalent to three scalar equations in two unknowns, 

si+1 and ti+1. Out of the three equations, the pair with the largest Jacobian determinant is 

chosen, and solved for the next approximation, .

X
i 1+

X
i

Y X
i

–( ) Y X
i

–( ) n̂
i

⋅[ ] n̂
i
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si 1+ ti 1+,( )
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s∂
∂X

i

si 1+ si–( ) t∂
∂X

i

ti 1+ ti–( )+ +=

s∂
∂X
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s∂
∂ X s t,( ) t∂

∂X
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X A Bs Ct Dst+ + +=
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C Dsi+=

Y X
i

– Y Xi–( ) n̂
i

⋅[ ] n̂
i

– s∂
∂X

i

si 1+ si–( ) t∂
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In the current implementation, this algorithm is always performed a fixed number of itera-

tions.

Once the parametric coordinates of the image node have been determined to sufficient 

accuracy, they can be used to interpolate the values at the image node of all the physical 

quantities associated with nodes, such as nodal mass, velocity, acceleration, normal stress, 

etc., using the formula of Eq 6:

(EQ 20)

where, again, the Fi are the values at the corner nodes, and the  are the basis functions.

Calculating the parametric coordinates is the single most expensive operation performed 

by the contact domain. In some cases, specifically when the contact surface is very flat, a 

simpler algorithm can be employed. In the simpler approach, a tangent plane at the mid-

point (i.e. (s, t) = (0, 0)) of the order face is taken, the normal to the plane passing through 

the active node is calculated, and the (s, t) at which this normal intersects the order face 

are taken as the parametric coordinates of the associated image node. A closed form alge-

braic solution exists, and is much quicker to calculate than the iterative solution. However, 

the iterative method is usually necessary, and is the default.

A.11.8  Interpolations at the Image Node

Once the parametric coordinates of the image node are known, the basis functions  

(Section A.11.2) are evaluated at those coordinates. The  can then be used to interpo-

late various nodal quantities at the image node, such as nodal mass and node-based normal 

force. For example the normal force at the image node is

F FiΦi s t,( )∑=

Φi

Φi s t,( )

Φi
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(EQ 21)

where Fi are the values of the node-centered normal forces (Section A.11.6) at the four 

corners of the order face, which contains the image node.

A.11.9  Pressure Adjustment to Acceleration

The next step is to account for the pressure, or normal force per unit area, exerted by the 

area surrounding the image node on the area surrounding the active node. This is the com-

pletion of the process by which the bulk node accelerations were calculated, prior to Con-

tact calculations. At that time, acceleration of the contact nodes was computed from a 

weighted sum of the stresses in each of the elements that shared the node. That is, the 

nodes were treated as nodes on a free surface. In reality, however, elements on the other 

side of the contact surface contribute stress (in this case pressure, since the surface is 

assumed frictionless) to the net stress at the node. This step corrects the acceleration to 

account for this pressure.

Theoretically this step could be skipped, since  normal stress is continuous across a con-

tact surface, and thus will cancel out during center-of-mass acceleration calculation 

(Section A.11.10). However, the approach taken here has a smoothing effect on instabili-

ties, since it results in accelerations entering the center-of-mass calculations that are more 

nearly equal.

To adjust acceleration for pressure effects, each side will in turn be taken as the active 

side. First, the average pressure for each active face is calculated. For each of the corner 

nodes of the face, the average of the normal force at that node and the normal force at the 

F FiΦi∑=
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image node is taken. Next, the average of these averages over the four nodes of the face is 

calculated. This is the average pressure P for that face.

Then the pressure is converted from a scalar areal density to a vector force by multiplying 

it by one quarter of the area of the face, and assigning it a direction normal to the face. 

This is done simply by multiplying it by B x C. As discussed in Section A.11.3:

(EQ 22)

evaluated at (s, t) = (0, 0).  is a vector tangent to the face surface in the direction 

of increasing s, while  is tangent to the same surface in the direction of increasing 

t. Thus together they form the tangent plane at (s, t) = (0, 0), and their cross product is nor-

mal to the face at that point. 

Furthermore, it was shown in Section A.11.3 that B x C =  area of the face. So  

is one quarter of the force exerted by pressure on the face, which is just the amount appor-

tioned to each of the four corner nodes (the negative sign is due to the sign convention for 

pressure, which is opposite that of stress).

Next, in a loop over all active nodes, each node loops through each of the faces it is 

directly connected to, and accumulates that face’s  into the net force  on that 

node due to pressure.

B C×
s∂

∂ X s t,( )
t∂

∂ X s t,( )×=

s∂
∂ X s t,( )

t∂
∂ X s t,( )

1
4--- PB C×–

PB C×– FP
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Finally, the force  on the node is converted to an acceleration increment  by New-

ton’s Law:

(EQ 23)

where m is the mass assigned to the node.

 is added to the acceleration of the node calculated during the bulk calculations and sent 

to the contact domain. This adjusted acceleration is the input to the center-of-mass accel-

eration computation described in the next section.

A.11.10  Center of Mass Adjustment to Acceleration

A final correction is made to the acceleration of each assigned node, prior to integrating its 

new position. This correction treats the active node and its image node as a system, and 

calculates the component of acceleration of the center of mass of this system, in the direc-

tion orthogonal to the contact surface. This component replaces the orthogonal accelera-

tion of the active node, while its tangential acceleration is left unchanged.

This step ensures continuity of momentum orthogonal to the surface, which must hold 

physically, while allowing discontinuity of momentum tangentially as the two sides slide 

relative to each other. 

Let the subscript "a" refer to the active node, and the subscript "i" refer to the image node. 

The acceleration of the image node, and the mass apportioned to it, must be interpolated 

from the image node’s parametric coordinates and the corresponding values at the corner 

nodes of the order face:

FP aP

aP FP m⁄=

aP
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(EQ 24)

Then the center-of-mass acceleration is:

(EQ 25)

and the component of  normal to the surface is , where  is the node-cen-

tered normal of the active node (Section A.11.5). The normal component of the active 

node’s acceleration is replaced with this center-of-mass normal component, while the tan-

gential component is left unchanged:

(EQ 26)

This correction is applied to all assigned nodes, master and slave, symmetrically on the 

contact domain.

A.11.11  Calculating New Node Velocities and Positions

Once the corrected values for nodal acceleration are available, it is a simple matter to cal-

culate the velocities and positions. The bulk calculation uses a staggered time grid, where 

the velocities are calculated at the "half-steps", and the accelerations and positions at the 

"whole-steps":

mi mkΦk s t,( )∑=

ai akΦk s t,( )∑=
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maaa miai+

ma mi+-----------------------------=
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---+ n 1+
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2---–
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2---+
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Note that . Central differences are used to build the integration 

scheme:

(EQ 27)

 has just been calculated (Section A.11.10).  and  are input to the contact 

algorithm, as are  and . So the new velocity  and position are calculated as:

(EQ 28)

A.11.12  Order Node and Order Face Update

After the coordinates of the assigned nodes have been updated, the new order node and 

order face must be determined for each assigned node. The search is limited by the follow-

ing constraints:

        1.The new order node must share a face with the old order node

        2.The new order face must include the new order node as a corner
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FIGURE A-39

The above figure shows part of the contact side opposite a given assigned node (called the 

active node). The active node itself is not shown. Assume that the old order node, from 

before the coordinate update, is marked by the filled-in circle. Then the candidates for the 

new ordernode are the old ordernode, and any of the nodes marked by open circles. The 

new order face can therefore be any of the faces marked by "x". However, not all these 

faces needs to be checked. The new order node is first determined, then only the faces that 

include the new order node are candidates for order face.

The new order node is simply the candidate with the least euclidean distance to the active 

node.

x    x    x    x
x    x    x    x
x    x    x    x
x    x    x    x
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Once the order node is determined, all faces that include the order node, as determined by 

the dual connectivity (Section A.2.2), are tested to determine which is the order face.

FIGURE A-40

In Figure A-40 (a), the face is one of the candidate faces. n0 is the new order node. A ver-

tex is formed by the three nodes n1, n0, n3, which also define the plane passing through the 

three points. To simplify the discussion, consider the local reference frame x’-y’ of 

Figure A-40 (b), in which R1 represents the vector from n0 to n1, and R3 represents the 

vector from n0 to n3. The reference frame is chosen so that R1 lies along the positive x’ 

axis, and R3 lies in the upper-half plane.

n3 n2

n0 n1

(a)                                                            (b)

x’

y’

R3

R1
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Now consider the projection of the active node onto this plane. Figure A-41 shows this sit-

uation for two different cases. Ri is the projection of the active node onto the plane formed 

by R1 and R2.  

FIGURE A-41

 In (a) the face containing the vertex would be accepted as the new order face, while in 

case (b) it would be rejected. The criterion is whether or not the vector Ri lies within the 

smaller angle formed by R1 and R3. This can be expressed algebraically by the following 

two equations:

(EQ 29)

A.11.13  The Put-Point-On Correction

It was found in practice that as a simulation proceeded, the two sides of a contact surface 

would gradually separate or interpenetrate. Unlike Lagrange or Penalty methods of con-

tact enforcement, the method described here has no inherent mechanism to compensate for 

the gradual round-off error, no feedback system based on distance between the sides that 

will act to keep the sides together. There is only the (imperfect) symmetry of operations. 

In most physical simulations such small errors are an accepted and largely ignored feature 

of discretization, but in contact calculations each side provides a fine caliper to measure 
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the numerical imperfections of the other side: i.e. the sides manifestly do not stay in con-

tact. To remedy this a constraint is explicitly applied, by projecting the slave side onto the 

master side. For most applications it is sufficient to project the slave node velocities onto 

the master side: i.e. to match velocities with the image node on the master side. Less fre-

quently it is necessary to project the coordinates themselves onto the master side image 

nodes. The rationale here is that, at this point the motion of either side is accurate to within 

the inherent limits of the method, so the master side is arbitrarily chosen as "truth". 

A.12  CD<−>CD Communication

A.12.1  Rationale

During the Contact calculations, there are two points where updated nodal quantities are 

required for ghost nodes. The first point occurs during pressure calculation.

To calculate the force on an assigned node due to pressure, the pressure for all surrounding 

faces on the same side is needed. This in turn requires the net normal force at each corner 

of the surrounding faces, which is the average of the normal force at the corner node and 

the interpolated normal force at the corresponding image node. But to calculate normal 

force at the image node requires nodal normal forces at each corner of the face containing 

the image node. And in order to calculate the nodal normal force at any corner node 

requires the stress on all faces surrounding the node, and the coordinates of all nodes at the 

corners of those faces.

Other than the initial assigned node, all other nodes in the above description may be ghost. 

One alternative is to calculate the nodal normal force for ghost nodes out to a radius of 2 
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from any assigned node, which would require an additional layer of ghosts beyond that, as 

well as a lot of redundant calculation. A second alternative, the one chosen here, is to 

implement CD↔CD communication to get the nodal normal forces for ghost nodes from 

the CDs where they are assigned nodes.

A second CD↔CD communication point occurs after the final accelerations have been 

calculated. Updated velocities and coordinates of ghost nodes are required in order to 

accurately determine the new order node (which may be a ghost) and order face, as well as 

to correctly project the velocity of coordinates of slave nodes onto the moved master sur-

face during the Put-Point-On operation. When the accelerations of the ghost nodes are 

known, it is simple to integrate (as described in Section A.11.11) to get the correct veloci-

ties and positions of ghosts as well as assigned nodes.

In addition to the computational requirements, CD↔CD communication is also used to 

build the nextTimePDs lists, determining which primary domains the CD will talk to next 

cycle.

A.12.2  Updating the Ghosts

In Section A.10.6 the CD↔CD invoices were described. Also included in the discussion 

were a list of the neighbor CDs that have ghost copies of this CD’s assigned nodes (the 

CDSendList), and a list of CDs that have assigned nodes that this CD has ghost copies of 

(the CDRcvList).
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First, the contact domain loops through its neighbor CDs in the CDRcvList, allocates buff-

ers for each, adequate to receive the expected data, and then issues an asynchronous read 

from the neighbor.

Next it loops through the neighbor CDs in the CDSendList. For each contact domain in the 

list it allocates a buffer, copies the invoices (master and slave) for that neighbor into the 

buffer, and then copies the appropriate data for the particular  CD↔CD communication 

pass for each node in the invoice into the buffer. It then sends the buffer to the neighbor 

CD.

After all the neighbor CDs in the CDSendList have been sent the update data for their 

ghost nodes, the contact domain waits for the asynchronous reads issued earlier to com-

plete. When they are complete, the contact domain processes each input buffer. It first 

extracts the sent invoices (in Sidx indices), and converts them to Cidx indices using its 

Sidx→Cidx map, then extracts the update data in invoice order and uses it to update the 

appropriate values in the corresponding ghost nodes.

A.12.3  The nextTimePDs List

Another pass of CD↔CD communication is required to help determine which primary 

domains will send this contact domain data next cycle. This determination is made at the 

end of the contact calculation, after the new order node and order face have been deter-

mined.

Recall from Section A.9.1 that the nodes required on a particular contact domain are 

determined by the set of generators for that contact domain. To recap, a node is a 
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generator for the CD if  it is assigned to the CD (Rule 1), or if it is the order node of a node 

assigned to the CD (Rule 2). Given the set of generators for a CD, then the union of the 

neighborhoods of the generators is the set of nodes required on the contact domain.

To convert this information to the knowledge of which primary domains have these nodes, 

and hence communicate with the CD, the neighbor PD lists (Section A.4.1.7) of the 

generators are used. The neighbor PD list of a node is simply the union of the primary 

domains where the node or any nodes in its neighborhood are local. This list is static for a 

node, and is sent to the contact domain as part of the nodal data.

Once the set of generators for the contact domain next cycle has been determined, the 

union of the neighbor PD lists of these generators produces the list of primary domains 

that the contact domain will talk to next cycle.

The next issue then, is to determine the set of generators. There are three sources for this 

set:

        1. The master nodes assigned statically to the contact domain

        2. The set of slave nodes that are order nodes of the assigned master nodes.

        3. The set of slave nodes whose order nodes are assigned master nodes

The first group is trivial: it does not change from one cycle to the next, so those nodes (and 

their neighbor PD lists) are always available. The second group is also simple, because the 

new order node of an assigned master node must be available on the CD as either an 

assigned or ghost slave node (this is one basis for the choice of a neighborhood radius). the 

neighbor PD lists of ghosts as well as assigned nodes are available on the contact domain, 

so the CD loops through its assigned master nodes, finds their new slave order nodes, and 
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from there the new order node’s neighbor PD list, which it ORs into the nextTimePDs list 

under construction.

The third group provides the most difficulty. An assigned slave node’s order node for the 

current cycle is guaranteed to also be assigned to the same CD, by the nature of the 

decomposition; this is how the slave node’s CD is assigned. However, after the nodal 

positions are advanced and the ordering recalculated, the assigned slave node’s new order 

node may be a ghost. Or shifting the perspective to the CD of the new order node, ghost 

slaves may order on assigned masters, and thus be generators for the CD next cycle. But 

the CD doesn’t know the new order nodes of ghost slaves; that is computed where the 

slave is an assigned node. Thus the need for  CD↔CD communication.

To process the third group of generators, each CD loops through its list of assigned slave 

nodes. For each, it finds its order node. If the order node is an assigned master node, it 

ORs the order node’s neighbor PD entries into the nextTimePDs list under construction. 

If, however, the order node is a ghost, it finds the CD where the ghost is assigned, and 

ORs the order node’s neighbor PD entries into an accumulating list for that particular CD.

When all the assigned slave nodes have been processed in this fashion, the accumulated 

list of neighbor PDs for each neighbor CD is sent to the CD, where it is OR’ed into that 

CDs nextTimePDs list.
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A.13  CD -->PD Communication

At the finish of the contact calculation the updated data is returned to the primary 

domains. Again, as in PD→CD communication, the msgBases and their associated 

invoices are used to guide the transfer.

A.13.1  Packing the Results

Recall that when a primary domain sends nodes to a contact domain, the primary domain 

allocates a msgBase for that particular transaction, and creates invoices of the nodes sent. 

The Sidx version of the invoice is sent along with the data. On the receiving end the Sidx 

invoices are converted to Cidx invoices, which are stored in the receiving msgBase for 

that primary domain.

In returning the data, these Cidx invoices are used to determine what to send back to the 

primary domain. As a Cidx invoice is traversed the local index is used to retrieve the vari-

ous results, specifically new ordernode, orderface, position and velocity, which are then 

copied into the outgoing int and float buffers for that primary domain. Only the assigned 

node invoices, master and slave, are traversed since updated results are only calculated 

and returned for the assigned nodes.

There is one exception to this. If a slave node, assigned or ghost, is the ordernode of one or 

more master nodes assigned to this contact domain, that slave node is flagged. A slave 

node thus flagged is a Rule 2 generator (Section A.9.1) for this contact domain next cycle. 

The status, flagged or unflagged, for each assigned and ghost slave node is returned in the 

int buffer, in invoice order.
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It should be noted that, for nodes along the boundaries of PDs, which are shared by multi-

ple PDs, each such primary domain redundantly sent the node to the contact domain. The 

redundancy was removed there, and the updated nodal values calculated once. But the 

node still appears in the invoice of each corresponding CD msgBase. Thus when the 

results are packed into the outgoing buffers for return to the primary domains, the results 

for these shared nodes will be copied into each corresponding buffer, and all contributing 

primary domains will receive the updated nodal data for the shared node

A.13.2  Sending and Receiving

After the int and float buffers for each PD that communicates with this CD this cycle are 

complete, the buffers are sent back to the originating PDs. This step is similar to the 

PD→CD communication (Section A.9.5), except that no preliminary sends of buffer 

lengths is required, since the originating PDs know how much data to expect back.

A.13.3  Unpacking the Results

When the buffers from the various contact domains that communicate with this primary 

domain are all received, the buffers are unpacked into primary domain and bulk domain 

structures. The updated coordinates and velocities of all nodes are copied over the corre-

sponding pre-contact data in the bulk domain list of nodal coordinates and velocities. 

When the invoices were originally constructed (Section A.9.3) a Bidx version of each 

invoice was built. The data returned from the CD is in invoice order, so the Bidx invoice 

can now be used to store the returned data at the correct index in the bulk domain.
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From the integer buffer the primary domain obtains the updated ordernode and orderface 

for each node it sent to the CD. These are copied into the corresponding fields of the 

nodeStuff structure (Section A.4.1) using the Pidx invoice to select the correct nodeStuff 

structure. If a node is a slave, then the statically assigned CD of its new master ordernode 

is used to determine which CD the slave will be assigned to next cycle (its rule 1 CD). 

Also if a slave node has been tagged as being the ordernode of one or more assigned mas-

ter nodes of the CD which returned this buffer, then the CD is added to the Rule 2 CD list 

in the node’s nodeStuff struct, which will make this node a rule 2 generator for the CD 

next cycle (Section A.9.1)

With this, the contact work for this cycle is complete.
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APPENDIX B     ALE3D EXTENSIONS

The development described in the previous chapters is a simplification of the software 

actually incorporated in ALE3D. This was done to avoid hiding the essential issues in a 

deluge of details. In this appendix some of the real-world complications of the production 

implementation will be discussed, though at a higher level than the previous discussion.

B.1 Multiple domains per Processor

ALE3D is designed to support domain overloading, or the ability to support multiple bulk 

domains on each processor. This has several advantages. First, it decouples the problem 

generation, specifically the domain decomposition, from the number of processors actu-

ally used. Thus a problem decomposed into 1000 domains may subsequently be run on 50, 

100, 1000, or any other available number of processors (not necessarily a divisor of 1000). 

This provides flexibility to adapt to a dynamic machine load without regeneration.

Second, it enables a large-grained style of load-balance. If there are many more domains 

than processors, then if the computational requirements for the various domains change 

and the problem becomes unbalanced, there is the possibility of regrouping the domains 
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assigned to each processor to restore the load balance. This potential is not currently exer-

cised in ALE3D.

Third, domain sizes can be chosen small enough so that the significant data for a domain 

can fit into the processor’s memory cache, leading to improved single-processor perfor-

mance.

Finally, the domain level provides a large-grained level of parallelism which can conve-

niently be taken advantage of  in the prevalent "network of SMP’s" model of supercom-

puter. A single node of such a machine consists of multiple processors. Multiple domains 

are assigned to a node, and the code is then multi-threaded at the domain level: Each pro-

cessor of the node takes a different iteration in any loop over domains.

Balanced against these advantages is the drawback of greater memory requirements. This 

is due to to the need for each domain to have available not only its local data, but a copy of 

"ghost" data for nodes and zones in the neighborhood of its borders. This leads to data 

redundancy that increases as the number of domains per node increases.

Domain overloading add complexity to the contact implementation primarily in the com-

munication handling. To minimize the number of required messages, all communication is 

processor-to-processor, rather than domain-to-domain. Thus the software must package 

data from the different local domains together, and must keep track of the processor-

domain hierarchy. For example, in PD↔PD communication, as described in Section A.8, 

invoices are kept for what to send to each neighbor processor, defined as a processor one 

or more of whose domains is a neighbor to one or more domains of this processor.
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The invoice structure actually contains a list of substructs, one for each local domain. 

Each substruct contains a number of invoice lists, one for each domain in the neighbor 

processor.

Similarly, in PD↔CD communication, the msgBase structures described in Section A.9.4 

actually are defined at the processor level, and contain substructs which in turn contain the 

invoices of nodes and faces from some particular domain of the processor.

B.2 Multiple Slide Interfaces

The description in Chapters 3 and 4 assumed a single slide interface. In ALE3D an arbi-

trary number of slide interfaces may be defined. Each slide is treated independently of the 

others (except for overlapping or intersecting slides, described in Section B.4 and 

Section B.5). However, the slide decomposition may assign portions of multiple slides to 

a single processor, so the data structures and code in the contact domain must support this 

multiplicity. In particular the msgBase struct hierarchy is again deepened so that there are 

separate substructs for each slide surface involved. For each of these there are separate 

substructs for each domain, as described in Section B.1. Also, the processor handling mul-

tiple slides builds a separate contact domain, as described in Section A.10, for each of 

them.

B.3 Void Opening and Closing

ALE3D supports the ability for slide interfaces to initially be separated and to close at 

some dynamically determined time, conserving total momentum in the process. Con-

versely, if a tensile force develops between the two sides of a slide interface, ALE3D 
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allows the two sides to separate. This makes events such as projectile-target impact possi-

ble to simulate.

Even when the two sides are separated, the contact logic continues to calculate the closest 

node to a given node on the other side each cycle. In fact without this knowledge it would 

be impossible to determine when the void has closed. But beyond this, it also allows the 

local search algorithm used in updating the order node (Section A.11.12) to suffice as clo-

sure is approached, rather than requiring a global search for the nearest node. As the two 

sides approach, the order node of a given node will in general change, but it will change in 

an orderly fashion, moving from a previous order node to one of its neighbors in terms of 

connectivity, due to continuity of motion. If this is not true then the timestep is too large, 

just as can occur when the surfaces are in contact.

B.4 Overlapping Slides

In some cases a node can belong to more than one slide surface. For instance, consider 

Figure B-1:

FIGURE B-1

Nodes along the top surface are defined to be on the master sides of both surface 1 and 

surface 2, since at different times any node on the top surface may be in contact with either 

of the slave sides S1 or S2. This is handled in ALE3D by redundantly calculating the 

     

S1                           S2

M1 & M2
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effect on such a node due to each surface independently, in different contact domains. At 

the end of the contact calculations the results are returned to the home bulk domain of the 

node. If a node belongs to an overlapped surface, then rather than updating the coordinates 

and velocities immediately, the results are stored in a temporary holding area until they are 

available from each overlapped slide. Then a decision is made independently for each 

overlap node. If a node is clearly associated with one surface or the other, that result is 

used. This is dictated by the extension flag. If a node is "off the edge" of its opposing sur-

face by more than a fraction of the size of its order face, then it is "on the extension" and 

its extension flag is set. This is done in the contact domain, and the extension flag is 

returned to the bulk domain. For an overlap node if its extension flag is set for one surface 

and not the other, then the results from the surface where it is not set are used.

If, however, neither extension flag is set, then the choice is arbitrated by a user-specified 

preference, which is statically set for each pair of overlap surfaces.

B.5 Intersecting Surfaces

In ALE3D it is possible for two or more slide surfaces to intersect. There are two possible 

geometries of intersection. The first, called a corner intersection, occurs when the surfaces 

meet at an angle as in Figure B-2.

FIGURE B-2

M1 M2

S1 S2
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Nodes that lie along the bold lines are intersection nodes. They are on surface 1 and 2 

simultaneously. Unlike overlap nodes, where the force on the node is calculated indepen-

dently for the two surfaces, and then only one result is used, for intersection nodes the 

force from the two opposing surfaces are summed. Furthermore the put-point-on operation 

(Section A.11.13) is performed sequentially on the two surfaces, and unless the surfaces 

are at right angles, this introduces an order dependency.

FIGURE B-3

In Figure B-3 (a), the slave node s is put-point-on onto master surface M1, then onto M2. 

Figure B-3 the order is reversed. Note that the slave node s does not end up in the same 

place under both operations.

A node may also lie on the intersection of 3 surfaces, as for instance the corner or a box.

The second type of intersection is called a "T" intersection. Consider Figure :

FIGURE B-4

   M1                M2                                           M1                M2
s                                                                    s

(a)                                                                   (b)

M1 & M2

S1                  S2
S3     M3
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Nodes along the bold lines are the intersection nodes. As with the corner intersection, the 

intersection nodes of a "T" intersection experience force from both slide surfaces, M1 and 

M3 or M2 and S3. Note that T intersections also involve overlapping surfaces (M1 and M2 

in this case). 

Intersecting surfaces add considerable complexity to the code. Because the forces from 

each surface are summed, and because the put-point-on is done serially, the contact calcu-

lation for the node for each surface it belongs to must be done on the same contact proces-

sor. But an intersection node may be a master node on one surface and a slave node on a 

different surface. As a master node it is assigned by the contact decomposition statically to 

one processor, but as a slave node its domain assignment may move around as its order 

node changes. Resolving this conflict is a delicate matter best understood through perusal 

of the source code.

B.6 Advection and Thermal Phases

In addition to the principal contact phase which is part of the Lagrange calculation, there 

are two other places (at present) in ALE3D where the contact decomposition is used. In 

both cases, the same machinery described in Chapter 5 is used to create the contact 

domains, but the actual contact calculation, described in Section A.11, is replaced by cal-

culations appropriate to that phase.

During the advection, or remap, phase the zonal positions for advecting materials may be 

changed. For zones bordering a contact surface, this is implemented in such a way that the 

contact nodes tend to be pulled away from the opposing surface. At present, at most one 
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side of a contact surface may advect. To restore the shape of the surface, a put-point-on 

operation (Section A.11.13) is performed: i.e. the advecting surface is mapped back onto 

the non-advecting surface. This operation can only be done in the contact domain, since it 

is only there that corresponding patches of the two sides are available on the same proces-

sor.

Similarly, during the thermal transfer across contact surfaces, corresponding information 

from both sides of the surface must be available locally, and the contact domain mecha-

nism is invoked to create this environment.

B.7 ALE (Coalescing) Slides

During the evolution of a slide interface, the surface may become so convoluted that it no 

longer makes sense to represent it as a surface; it is more accurate to represent it as a thin 

region of mixed cells transitioning from one side to the other. At this point the slide sur-

face, or some subset of it, may be "deleted" in ALE3D. This requires that a least one side 

of the surface be an advecting surface, and that initially and during the remap each cycle, 

the nodes of the advecting side are made to match exactly the coordinates of correspond-

ing nodes on the opposing side.

Given these conditions, when it is time to delete all or part of the surface, corresponding 

nodes and faces on the two sides are merged into one, and the surface, as two separate 

sides, ceases to exist. After this time, advection across what was previously the slide inter-

face is possible, and the problem of surface convolution is "smoothed" by the mechanism 

of mixed zones.
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